期刊文献+

联合独立成分分析和典型相关分析盲分析fMRI数据 被引量:1

Blind analysis of functional MRI Data using independent component analysis and canonical correlation analysis
下载PDF
导出
摘要 为了自动识别功能信号成分,通过对灰质数据和脑脊液数据独立成分的空间相关性进行典型相关分析,有效地解决了独立成分的排序问题.提出的方法不需要任何先验信息,能够稳健地识别与实验设计相关的功能信号成分,实现了对fMRI数据的盲分析.通过对临床真实fMRI数据的分析,阐明了提出方法的有效性及可靠性. In order to identify functional component automatically, the spatial correlation of independent components of gray matter data and that of cerebrospinal fluid data is analyzed using canonical correlation analysis, and the ordering of independent components is resolved effectively. The proposed method can robustly recognize the component related the functional activation paradigm without any prior information, and achieve blind analysis of functional magnetic resonance imaging (fMRI) data. The experimental results of analyzing real fMRI data show the validity and the reliability of the presented method.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第4期652-656,共5页 Journal of Southeast University:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)资助项目(2003CB716102)
关键词 功能磁共振成像 独立成分分析 典型相关分析 盲分析 functional MRI independent component analysis canonical correlation analysis blind analysis
  • 相关文献

参考文献12

  • 1Ogawa S,Lee T M,Kay A R,et al.Brain magnetic resonance imaging with contrast dependent on blood oxygenation[C]//Proceedings of the National Academy of Sciences of the United States of American,1990,87(24):9868-9872.
  • 2Herault C,Jutten J.Blind separation of sources,part Ⅰ:an adaptive algorithm based on neuromimetic architecture[J].Signal Processing,1991,24(1):1-10.
  • 3McKeown M J,Makeig S,Brown G G,et al.Analysis of fMRI data by blind separation into independent spatial components[J].Human Brain Mapping,1998,6(3),160-188.
  • 4Youssef T,Youssef A M,LaConte S M,et al.Robust ordering of independent components in functional magnetic resonance time series data using canonical correlation analysis[C]//Proceedings of SPIE.San Diego,California USA,2003:5031,332-340.
  • 5Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Network,1999,10(3):626-634.
  • 6Esposito F,Formisano E,Cirillo S,et al.Criteria for the rank ordering of fMRI independent component[J].NeuroImage,2001,13(6):S114.
  • 7Moritz C H,Rogers B P,Meyerand M E.Power spectrum ranked independent component analysis of a periodic fMRI complex motor paradigm[J].Human Brain Mapping,2003,18(2):111-122.
  • 8Hu X,Le T H,Parrish T,et al.Retrospective estimation and correction of physiological fluctuation in functional MRI[J].Magnetic Resonance in Medicine,1995,34(2):201-212.
  • 9Mandeep S D,John E I,James V H.Localization of cardiac-induced signal change in fMRI[J].NeuroImage,1999,9(4):407-415.
  • 10Christian W,Herbert L,Thomas S,et al.On the origin of respiratory artifacts in BOLD-EPI of the human brain[J].Magnetic Resonance Imaging,2002,20(8):575-582.

共引文献8

同被引文献6

  • 1楚恒,李杰,朱维乐.一种基于小波变换的多聚焦图像融合方法[J].光电工程,2005,32(8):59-63. 被引量:28
  • 2[1]Zhang Z,Blum R.A categorization of multiscale decomposition based image fusion schemes with a performance study for a digital camera application[J].Proc IEEE,1999,87:1315-1326.
  • 3[2]Yocky D A.Image merging and data fusion by means of the discrete two-dimensional wavelet transform[J].Journal of Optical Society of America,1995,12(9):1834~1841
  • 4[3]Mallat S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
  • 5[7]Ostu N.A threshold selection method from gray-level histogram[J].IEEE trans SMC,1979,9:62-66
  • 6刘贵喜,杨万海.基于小波分解的图像融合方法及性能评价[J].自动化学报,2002,28(6):927-934. 被引量:136

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部