摘要
为了自动识别功能信号成分,通过对灰质数据和脑脊液数据独立成分的空间相关性进行典型相关分析,有效地解决了独立成分的排序问题.提出的方法不需要任何先验信息,能够稳健地识别与实验设计相关的功能信号成分,实现了对fMRI数据的盲分析.通过对临床真实fMRI数据的分析,阐明了提出方法的有效性及可靠性.
In order to identify functional component automatically, the spatial correlation of independent components of gray matter data and that of cerebrospinal fluid data is analyzed using canonical correlation analysis, and the ordering of independent components is resolved effectively. The proposed method can robustly recognize the component related the functional activation paradigm without any prior information, and achieve blind analysis of functional magnetic resonance imaging (fMRI) data. The experimental results of analyzing real fMRI data show the validity and the reliability of the presented method.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2006年第4期652-656,共5页
Journal of Southeast University:Natural Science Edition
基金
国家重点基础研究发展计划(973计划)资助项目(2003CB716102)
关键词
功能磁共振成像
独立成分分析
典型相关分析
盲分析
functional MRI
independent component analysis
canonical correlation analysis
blind analysis