期刊文献+

具分段常数微分方程零解的全局吸引性 被引量:3

Global Attractivity for a Differential Equation with Piecewise Constant Arguments
下载PDF
导出
摘要 考虑具分段常数微分方程x′(t)=r(t)f(x([t])),t 0,其中r(t)非负连续,f有下界且具有负Schwarz导数,f∈C3(R,R),xf(x)<0当x≠0,f′(0)<0,[.]表示最大整数函数,证明了当-f′(0)n∫+1nr(s)ds≤2且∞∫0r(s)ds=∞时,方程的零解是全局吸引的. In this paper, we consider differential equation with piecewise constant arguments x'(t)=r(t)f(x([t])),t≥0 where r f∈C^3(R,R),xf(x)〈00 , if x ≠0 satisfying below bounded conditions and having everywhere negative Schwarz derivative. We obtained that if-f'(0)∫n^n+1r(s)ds≤2and∫0^∞ r(s)ds=∞, than the steady state solution x(t) = 0 ofthis equation is globally attracting.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第3期166-168,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省青年骨干教师基金(20050181) 河南省教育厅自然科学基金(2004601087)
关键词 具分段常数微分方程 SCHWARZ导数 全局吸引 differential equation with piecewise constant arguments Schwarz derivative global attractivity
  • 相关文献

参考文献3

  • 1Matsunaga H,Hara T,Sakata S.Global attractivity for a logistic equation with piecewise constant argument[J].Nonlinear Differ Equ Appl,2001,8:45-52.
  • 2Liz E,Pinto M,Rolledo G,et al.Wright type delay differential equations with negative Schwarzian[J].Discrete and Continuous Dynamical Systems,2003,9(2):309-321.
  • 3Faria T,Eduardo L,Jose J,et al.On a generalized yoke condition for scalar delayed population models[J].Discrete and Continuous Dynamical Systems,2005,21(3):481-500.

同被引文献21

  • 1朱道军,陈斯养.时滞分段常数变量Logistic模型的吸引性[J].山西大学学报(自然科学版),2005,28(2):120-122. 被引量:2
  • 2So J W-H, Yu J S. Global stability in a logistic equation with piecewise constant arguments[J]. H M J,1995,24:269--286.
  • 3Eduardo Lig, Manuel Pinto, Grongalo Rolledo, etal. Wright type delay differential equations with negative Schwarzian[J].Discrete and Continuous Dynamical systems, 2003,9 (2) : 309 - 321.
  • 4Hideaki Matsunaga, Tadayuki Hara, Sadahisa Sakatn. Global attractivity for a logistic equation with piecewise constant argument[J]. Nonlinear diff equ appli, 2001,8:45-52.
  • 5Shah S M, Wiener J. Advanced differential equations with piecewise constant argument deviations[J]. Internet J Math Sci, 1983,6 (4) : 671--703.
  • 6Hideaki Matsunaga,Tadayuki Hara,Sadahisa Sakatn. Global attractivlty for a logistic equation with piecewise constant argument [J]. Nonlinear diff equ appli, 2001,8 : 45-52.
  • 7Eduardo Lig, Manuel Pinto, Gronzalo Rolledo,et al. Wright type delay differential equqtions with negative Sehwarzian [J]. Discrete and Continuous Dynamical systems, 2003,9 (2) : 309 - 321.
  • 8Shah S M , Wiener J. Advanced differential equations with piecewise constant argument deviations [J]. Internat J Math Sci, 1983,6 (4): 671-703.
  • 9Cooke K L, Wiener J. Retarded differential equations with piecewise constant delays [J]. J Math Anal Appl, 1984,99 (1) : 265- 297.
  • 10Aftabizaadeh A R . Wiener J, Xu jlan-ming. Oscillatory and periodic solutions of delay differential equations with piecewise constant argument[J]. Proc Amer Math Soc,1987,99(4) :673-679.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部