摘要
考虑具分段常数微分方程x′(t)=r(t)f(x([t])),t 0,其中r(t)非负连续,f有下界且具有负Schwarz导数,f∈C3(R,R),xf(x)<0当x≠0,f′(0)<0,[.]表示最大整数函数,证明了当-f′(0)n∫+1nr(s)ds≤2且∞∫0r(s)ds=∞时,方程的零解是全局吸引的.
In this paper, we consider differential equation with piecewise constant arguments x'(t)=r(t)f(x([t])),t≥0 where r f∈C^3(R,R),xf(x)〈00 , if x ≠0 satisfying below bounded conditions and having everywhere negative Schwarz derivative. We obtained that if-f'(0)∫n^n+1r(s)ds≤2and∫0^∞ r(s)ds=∞, than the steady state solution x(t) = 0 ofthis equation is globally attracting.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第3期166-168,共3页
Journal of Henan Normal University(Natural Science Edition)
基金
河南省青年骨干教师基金(20050181)
河南省教育厅自然科学基金(2004601087)
关键词
具分段常数微分方程
SCHWARZ导数
全局吸引
differential equation with piecewise constant arguments
Schwarz derivative
global attractivity