摘要
获得具连续变量差分方程x(t+τ)-x(t)+p(t)x(t-rτ)=0的非振动解在脉冲扰动x(t_k+τ)-x(t_k)=b_kx(t_k),K∈N (1)下具有保持性的充分条件.
The authors obtain a sufficient condition for the persistence of nonoscillatory solutions of the difference equation with continuous variable
x(t+τ)-x(t)+p(t)x(t-ττ)=0
under the impulsive perturbationsx(tk+τ)-x(tk)=6kx(tk),k∈N(1)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2006年第4期595-600,共6页
Acta Mathematica Scientia
基金
国家自然科学基金(10071018)
教育部优秀青年教师计划项目资助
关键词
保持性
非振动解
脉冲扰动
具连续变量差分方程
Persistence
Nonoscillatory solution
Impulsive perturbation
Difference equation with continuous variable.