期刊文献+

A Class of Bidimensional FMRA Wavelet Frames 被引量:5

A Class of Bidimensional FMRA Wavelet Frames
原文传递
导出
摘要 This paper addresses the construction of wavelet frame from a frame multiresolution analysis (FMRA) associated with a dilation matrix of determinant ±2. The dilation matrices of determinant ±2 can be classified as six classes according to integral similarity. In this paper, for four classes of them, the construction of wavelet frame from an FMRA is obtained, and, as examples, Shannon type wavelet frames are constructed, which have an independent value for their optimality in some sense. This paper addresses the construction of wavelet frame from a frame multiresolution analysis (FMRA) associated with a dilation matrix of determinant ±2. The dilation matrices of determinant ±2 can be classified as six classes according to integral similarity. In this paper, for four classes of them, the construction of wavelet frame from an FMRA is obtained, and, as examples, Shannon type wavelet frames are constructed, which have an independent value for their optimality in some sense.
作者 Yun Zhang LI
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第4期1051-1062,共12页 数学学报(英文版)
基金 Excellent Talent Training Foundation of Beijing(20051D0501522)
关键词 FMRA FMRA wavelet frame integral similarity FMRA, FMRA wavelet frame, integral similarity
  • 相关文献

参考文献23

  • 1Young, R. M.: An introduction to nonharmonic Fourier series, Academic Press, New York, 1980
  • 2Benedetto, J. J., Li, S.: The thory of multiresolution analysis hames and applications to filter banks. Appl.Comput. Harmonic Anal., 5, 389-427 (1998)
  • 3Benedetto, J. J., Li, S.: Multiresolution analysis frames with applications, in "ICASSP'93," Minneapolis,III: pp. 304-307, April, 26-30, 1993
  • 4Chen, D. R.: On the splitting trick and wavelet frame packets. SIAM J. Math. Anal., 31, 726-739 (2000)
  • 5Debnath, L.: Wavelet transforms and time-frequency signal Analysis, Birkhauser, Boston, 2001
  • 6Boor, C. de, Devore, R. A., Ron, A.: On the construction of multivariate (pre)wavelets. Constr. Approx.,9, 123-166 (1993)
  • 7Belogay, E., Wang, Y.: Arbitrarily smooth orthogonal nonseparable wavelets in R^2. SIAM J. Math. Anal.,30, 678-697 (1999)
  • 8Cohen, A., Daubechies, I.: Non-separable bidimensionale wavelet bases. Rev. Mat. Iberoamericana, 9,51-137 (1993)
  • 9Grochenig, K., Madych, W.: Multiresolution analysis, Haar bases, and self-similar tilings. IEEE Trans.Infom. Theory, 38, 558-568 (1992)
  • 10Li, Y. Z.: On a class of bidimensional nonseparable wavelet multipliers. J. Math. Anal. Appl., 270, 543-560(2002)

同被引文献24

  • 1YANG ShouZhi,LI YouFa.Construction of multiwavelets with high approximation order and symmetry[J].Science China Mathematics,2009,52(8):1607-1616. 被引量:1
  • 2杨守志.紧支撑正交插值的多小波和多尺度函数[J].数学学报(中文版),2005,48(3):565-572. 被引量:11
  • 3De Yun YANG,Xing Wei ZHOU,Zhu Zhi YUAN.Frame Wavelets with Compact Supports for L^2(R^n)[J].Acta Mathematica Sinica,English Series,2007,23(2):349-356. 被引量:1
  • 4黄永东,程正兴.α带小波紧框架的显式构造方法[J].数学物理学报(A辑),2007,27(1):7-18. 被引量:15
  • 5Daubechies I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure and Applied Mathematics, 1988, 41(7): 909-996.
  • 6Mallat S G. Multiresolution approximation and wavelets orthonormal bases of L2(~)[J]. Transactions of the American Mathematical Society, 1989, 315(1): 69-87.
  • 7Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
  • 8Belogay E, Wang Y. Arbitrarily smooth orthogonal nonseparable wavelets in 2[j]. SIAM Journal on Mathematical Analysis, 1999, 30(3): 678-697.
  • 9Brown J L. On the error estimates in reconstructing a non-bandlimited function by means of the bandpass sampling theorem[J]. Journal of Mathematical Analysis and Applications, 1967, 18(1): 75-84.
  • 10Stickler D C. An upper bound on aliasing error[J]. Proceedings of the IEEE, 1967, 55(3): 418-419.

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部