期刊文献+

Optimized Local Trigonometric Bases with Nonuniform Partitions 被引量:1

Optimized Local Trigonometric Bases with Nonuniform Partitions
原文传递
导出
摘要 The authors provide optimized local trigonometric bases with nonuniform partitions which efficiently compress trigonometric functions. Numerical examples demonstrate that in many cases the proposed bases provide better compression than the optimized bases with uniform partitions obtained by Matviyenko. The authors provide optimized local trigonometric bases with nonuniform partitions which efficiently compress trigonometric functions. Numerical examples demonstrate that in many cases the proposed bases provide better compression than the optimized bases with uniform partitions obtained by Matviyenko.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第4期1069-1084,共16页 数学学报(英文版)
基金 the National Natural Science Foundation of China(No.10371122) Tianyuan Fund for Mathematics(No.A0324648)
关键词 Optimized local trigonometric bases Bell functions Nonuniform partitions Optimized local trigonometric bases, Bell functions, Nonuniform partitions
  • 相关文献

参考文献16

  • 1Malvar, H. S.: Signal processing with lapped transforms, Artech House, Inc., Norwood, MA, 1992
  • 2Malvar, H. S.: Lapped transforms for efficient transform/subband coding. IEEE Trans. Acoust. Speech Signal Process., 38, 969-978 (1990)
  • 3Bittner, K.: Error estimates and reproduction of polynomials for biorthogonal local trigonometric bases.Appl. Comput. Harmon. Anal., 6, 75-102 (1999)
  • 4Grochenig, K., Samarah, S.: Non-linear approximation with local Fourier bases. Constr. Approx., 16,317-331 (2000)
  • 5Averbuch, A., Braverman, E., Coifman, R.: Efficient computation of oscillatory integrals via adaptive multiscale local Fourier bases. Appl. Comput. Harmon. Anal., 9, 19-53 (2000)
  • 6Lian, Q. F., Wang, Y. G., Yan, D. Y.: Efficient computations of oscillatory singular integrals with local Fourier bases and their error estimates, to appear
  • 7Matviyenko, G.: Optimized local trigonometric bases. Appl. Comput. Harmon. Anal., 3, 301-323 (1996)
  • 8Jawerth, B., Sweldens, W.: Biorthogonal smooth local trigonometric bases. J. Fourier Anal. Appl., 2,109-133 (1995)
  • 9Chui, C. K., Shi, X.: Characterization of bi-orthogonal cosine wavelets. J. Fourier Anal. Appl., 3, 559-575(1997)
  • 10Tolstov, G. P.: Fourier series, Dover, New York, 1976

同被引文献9

  • 1Bernardini R, Vetteri M. Discrete and continuous time local Cosine bases with multiple overlapping [J]. IEEE Trans Signal Process, 1998, 46(12): 3166 -3180.
  • 2Lian Q F, Wang Y G, Yan D Y. A characterization of L^2 (R) by local trigonometric bases with 1 < p<∞ [J]. Advances in Computational Mathematics, 2006, 25: 91- 104.
  • 3Evans B G, Baughan K. Visions of 4G[J]. Electronics& Communication Engineering Journal, 2000, 12(6) : 293- 303.
  • 4Fernando W A C. Suitability of turbo coded OFDM for LEO satellite channels in global mobile communications [C]//International Conference on Consumer Electronics. 2001: 196-197.
  • 5Steendam H, Moeneclaey M. Sensitivity of orthogonal frequency division multiplexed systems to carrier and clock synchronization errors[J].Signal Processing, 2000, 80 (7): 1217- 1229.
  • 6van de Beek J J, Sandell M, Boriesson P O. ML estimation of time and frequency offset in OFDM systems[J]. IEEE Trans Signal Process, 1997, 45(7):1800-1805.
  • 7Luise M, Marselii M, Reggiannini R. Low-complexity blind carrier frequency recovery for OFDM signals over frequen cy-selective radio channels[J]. IEEE Trans Commun, 2002, 50(7): 1182-1188.
  • 8Tomasin S, Gorokhov A, Yang H B. Iterative interference cancellation and channel estimation for mobile OFDM [J]. IEEE Trans Wireless Commun, 2005, 4(1) : 238 -245.
  • 9Yeh Y H, Chen S G. DCT-based channel estimation for OFDM systems[C] // IEEE lnt Conf Commun. 2004: 2442-2446.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部