期刊文献+

Lagrangian Submanifolds Foliated by(n-1)-spheres in R^(2n)

Lagrangian Submanifolds Foliated by(n-1)-spheres in R^(2n)
原文传递
导出
摘要 We study Lagrangian submanifolds foliated by (n - 1)-spheres in R^2n for n ≥ 3. We give a general parametrization for such submanifolds, and refine that description when the submanifold is special Lagrangian, self-similar, Hamiltonian stationary or has mean curvature vector of constant length. In all these cases, the submanifold is centered, i.e. invariant under the action of SO(n). It suffices then to solve a simple ODE in two variables to describe the geometry of the solutions. We study Lagrangian submanifolds foliated by (n - 1)-spheres in R^2n for n ≥ 3. We give a general parametrization for such submanifolds, and refine that description when the submanifold is special Lagrangian, self-similar, Hamiltonian stationary or has mean curvature vector of constant length. In all these cases, the submanifold is centered, i.e. invariant under the action of SO(n). It suffices then to solve a simple ODE in two variables to describe the geometry of the solutions.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第4期1197-1214,共18页 数学学报(英文版)
基金 a MEC-Feder grant MTM2004-00109
关键词 Lagrangian submanifold special Lagrangian SELF-SIMILAR Hamiltonian stationary Lagrangian submanifold, special Lagrangian, self-similar, Hamiltonian stationary
  • 相关文献

参考文献12

  • 1Helein, F., Romon, P.: Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions. Comment. Math. Helv., 75, 668-680 (2000)
  • 2Chen, B. Y.: Riemannian geometry of Lagrangian submanifolds. Taiwan J. Math., 5, 681-723 (2001)
  • 3Blair, D.: Lagrangian helicoids. Michigan Math. J., 50(1), 187--200 (2002)
  • 4Harvey, R., Lawson, H. B.: Calibrated geometries. Acta Math., 148, 47-157 (1982)
  • 5Castro, I., Urbano, F.: On a new construction of special Lagrangian immersions in complex Euclidean space.Quart. J. Math., 55, 253-265 (2004)
  • 6Joyce, D.: Special Lagrangian m-folds in C^m with symmetries. Duke Math. J., 115, 1-51 (2002)
  • 7Castro, I., Urbano, F.: On a Minimal Lagrangian Submanifold of C^n Foliated by Spheres. Michigan Math.J., 46, 71-82 (1999)
  • 8Anciaux, H.: Construction of Lagrangian self-similar solutions to the Mean Curvature Flow in C^n, submitted
  • 9Wolfson, J.: Minimal Lagrangian diffeomorphisms and the Monge-Ampere equation. J. Differential Geom.,46, 335-373 (1997)
  • 10Oh, Y. G.: Volume minimization of Lagrangian submanifolds under Hamiltonian deformations. Math. Z.,212, 175-192 (1993)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部