期刊文献+

EVOLUTION OF MICROSTRUCTURE OF Sn-Ag-Cu LEAD-FREE FLIP CHIP SOLDER JOINTS DURING AGING PROCESS 被引量:2

EVOLUTION OF MICROSTRUCTURE OF Sn-Ag-Cu LEAD-FREE FLIP CHIP SOLDER JOINTS DURING AGING PROCESS
下载PDF
导出
摘要 Flip chip bonding has become a primary technology that has found application in the chip interconnection process in the electronic manufacturing industry in recent years. The solder joints of the flip chip bonding are small and consist of complicated microstructures such as Sn solution, eutectic mixture, and intermetallic compounds (IMCs), whose mechanical performance is quite different from the original solder bulk. The evolution of microstructure of the flip chip solder joints under thermal aging was analyzed. The results show that with an increase in aging time, coarsening of solder bulk matrix and AuSn4 IMCs occurred within the solder. The IMCs that are formed at the bottom side of the flip chip bond were different from those on the top side during the aging process. (Cu, Ni, Au)0Sn5 were formed at the interfaces of both sides, and large complicated (Au,Ni, Cu)Sn4 IMCs appeared for some time near the bottom interface after aging, but they disappeared again and thus (Cu,Ni, Au )0Sn5 IMC thickness increased considerably. The influence of reflow times during the flip chip bonding (as-bonded condition) on the characteristics of interfacial IMCs was weakened when subjected to the aging process. Flip chip bonding has become a primary technology that has found application in the chip interconnection process in the electronic manufacturing industry in recent years. The solder joints of the flip chip bonding are small and consist of complicated microstructures such as Sn solution, eutectic mixture, and intermetallic compounds (IMCs), whose mechanical performance is quite different from the original solder bulk. The evolution of microstructure of the flip chip solder joints under thermal aging was analyzed. The results show that with an increase in aging time, coarsening of solder bulk matrix and AuSn4 IMCs occurred within the solder. The IMCs that are formed at the bottom side of the flip chip bond were different from those on the top side during the aging process. (Cu, Ni, Au)0Sn5 were formed at the interfaces of both sides, and large complicated (Au,Ni, Cu)Sn4 IMCs appeared for some time near the bottom interface after aging, but they disappeared again and thus (Cu,Ni, Au )0Sn5 IMC thickness increased considerably. The influence of reflow times during the flip chip bonding (as-bonded condition) on the characteristics of interfacial IMCs was weakened when subjected to the aging process.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第4期301-306,共6页 金属学报(英文版)
关键词 lead free solder flip chip AGING lead free solder flip chip aging
  • 相关文献

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部