期刊文献+

基于RBF网络的参数自学习模糊控制的研究 被引量:8

Parameter Self-learning Fuzzy Control Based on RBF Neural Network
下载PDF
导出
摘要 模糊控制以其自适应性、鲁棒性和易于实现等优点得到广泛应用。然而模糊控制规则的获得通常由专家经验给出,这就存在诸如控制规则不够客观、专家经验难以获得等问题。在模糊控制系统中,模糊规则库的构建是至关重要的,因此研究模糊规则的自动生成有着重要的理论和应用价值。本文首先以模糊控制理论和RBF神经网络理论为基础,提出了一种能够有效表达模糊系统可解释性的RBF网络结构;然后详细讨论在此网络结构下提取模糊规则的学习算法;最后依据上述方法进行仿真实验,实验结果表明,这种根据测量数据自动提取模糊规则的方法是有效的。 Fuzzy control has been widely used due to its self-adaptability, robustness and easy implementation. However, fuzzy control rules are usually given by experts according to their experiences, which may not be objective and easy to acquire. It is important to structure the fuzzy rules store in the fuzzy control system, Therefore, researching automatic generation of fuzzy rules has important values in the theory and application. In this paper, firsdy, based on fuzzy control theory and radial basis function networks (RBFN) theory, a structure of RBF networks is proposed, which can expresses the interpretability of fuzzy systems efficiendy. Then the learning algorithm of extracting fuzzy rules from this RBF networks is discussed in detail. Lastly, simulation studies are carried out on examples, the results of simulation show that the algorithm of extracting fuzzy rules based on measured data is an effective method.
出处 《微计算机信息》 北大核心 2006年第08X期308-310,共3页 Control & Automation
基金 教育部科学技术研究项目(编号:204032)
关键词 RBF模糊神经网络 模糊规则提取算法 仿真实验 RBF fuzzy neural network, Algorithm for extracting Fuzzy rules, Simulation experiment
  • 相关文献

参考文献6

  • 1J.S.R.Jang, C.T.Sun. Neurofuzzy modeling and control[J]. IEEE Trans. Fuzzy Sys.1995, 3(3):378-406
  • 2L.X.Wang and J.Mendel. Generating fuzzy rules by learning from examples[J]. IEEE Trans. Syst., Man, and Cyb.. 1992, 22(6):1414-1427
  • 3D.A.Linkens, M-Y.Chen. Input selection and partition validation for fuzzy modeling using neural network [J]. Fuzzy Sets and Systems. 1999, 107(2):299-308
  • 4J.S.R.Jang and C.T. Sun. Functional equivalence between radial basis functions and fuzzy inference systems [J]. IEEE Trans. on Neural Networks. 1993, 4(1):156-158.
  • 5孙辉,李文,聂冰.一种聚类神经网络初始聚类中心的确定方法[J].系统仿真学报,2004,16(4):775-777. 被引量:5
  • 6胡为,付兴武.基于模糊神经网络的智能火灾报警控制系统[J].微计算机信息,2004,20(3):20-21. 被引量:5

二级参考文献4

共引文献8

同被引文献26

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部