期刊文献+

基于并行粒子群算法的解相关多用户检测 被引量:2

Decorrelation Multi-User Detection Based on Parallel Particle Swarm Optimization
下载PDF
导出
摘要 将“联姻”策略应用在粒子群算法中,提出一种并行粒子群算法(PPSO)。该算法可以有效地加强种群之间的联系,保证单个种群中的粒子在进化过程中的多样性,从而可获得更高效的搜索性能。分析了将并行粒子群算法应用于直接扩频CDMA解相关多用户检测的理论依据和实际性能。仿真结果证明该算法能够减小计算的复杂度,在抗多址干扰能力上比传统的匹配接收机和解相关接收机有显著的提高,与解相关接收机的抗远近能力相当,且比基于遗传算法的接收机具有更快的收敛速度。 The allied strategy is introduced into PSO(Particle Swarm Optmization) and a parallel particle swarm optimization(PPSO) is proposed. This algorithm can strengthen the linking of different swarms and assure the diversity of particles in the course of evolution, so it can gain more efficient seaching abilities. In this paper, an analysis of theoretical basis and prafical performance is made when PPSO is applied to decorrelation DS- CDMA multi-user detection . The experiment result demonstrats that the detector based on PPSO can reduce computational complexity, it is superior than the conventional match detector and decorrelation detector in MAI ( Multi - Access Interference) resistance and is equal to decorrelation detector in near- far resistance , it has better convergence property than detector based on GA algorithm.
出处 《电讯技术》 2006年第4期177-181,共5页 Telecommunication Engineering
关键词 直扩码分多址 多用户检测 多址干扰 远近效应 粒子群算法 解相关 DS - CDMA multi - user detection MAI near - far effect particle swarm optimization (PSO) decorrelation
  • 相关文献

参考文献7

  • 1Verdu S. Mininum probability of error for asynchronous Gaussian multi - access channels [ J ]. IEEE Trans. Infor. Theory, 1986,32(1) :85 -96.
  • 2Lupas R, Verdu S. Linear multiuser for synchronous codedivision multiple access channel [ J ]. IEEE Trans. Infor. Theory,1989 ,35( 1 ) :123 - 136.
  • 3Kennedy J, Eberhart R C. Particle swarm optimization[ C ] //. Proc of IEEE International conference on Neural Networks. Astralia: IEEE Press, 1995 : 1942 - 1948.
  • 4杨启文,张国宏,蒋静坪.基于“联姻”策略的并行遗传算法[J].电子学报,2000,28(11):108-110. 被引量:18
  • 5Angeline P J. Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences[ C ]//. Proc. of 7th annual conference on Evolutionary Programming. Germany, 1998 : 601 - 610.
  • 6Lovbjerg M, Rasmussen T K, Krind T. Hybrid Particle swarm optimiser With Breeding and Subpopulation[ c]//.Proc of the third Genetic and Evolutionary Computation Conference. San Francisco,2001:469 -476.
  • 7Cem E, Kadri H. Multiuser dectection using a genetic algorithm in CDMA communications systems [ ] ]. IEEE Traus on Commun. ,2000,48(8) :1374- 1383.

二级参考文献5

共引文献17

同被引文献17

  • 1罗建宏,张忠能.并行仿真的粒子群优化算法异步模式研究[J].计算机仿真,2005,22(6):68-70. 被引量:13
  • 2Boukerche A, Hoy A, Thomas N.Dynamic grid-based muticast group assignment in data distribution management[C]//International Workshop on Distributed Simulation and Real Time Applications.San Francisco: IEEE, 2000: 108-115.
  • 3Verdu S. Minimum probability of error for asynchronous Gaussian multiple-access channels [ J ]. IEEE Transac- tions on Information Theory, 1986,32 ( 1 ) : 85- 96.
  • 4Deep K, Chauhan P, Pant M. A new fine grained inertia weight Particle Swarm Optimization [ C ]// Proceedings of 2011 World Congress on Information and Communication Technologies. Mumbai : IEEE, 2011 : 424-429.
  • 5Arasomwan M A, Adewumi A O. On adaptive chaotic in- ertia weights in particle swarm optimization [ C ]//Pro- ceedings of 2013 IEEE Symposium on Swarm Intelligence (SIS). Singapore: IEEE, 2013 : 72-79.
  • 6Shi Y, Eberhart R C. Population Diversity of Particle Swarms[ C ] //Proceedings of 2008 IEEE Congress on Evolutionary Computation. Hong Kong: IEEE, 2008: 1063-1067.
  • 7Mahmoodabadi M J, Momennejad S, Bagheri A. Online Optimal Decoupled Sliding Mode Control Based on Mov- ing Least Squares and Particle Swarm Optimization [ J ]. Information Science,2014, 268 ( 15 ) :342-356.
  • 8Parsopoulos K E, Plagianakos V P, Magoulas G D, et al. Improving the Particle Swarm Optimizer by Function "stretching"[ J]. Advances in Convex Analysis and Global Optimization,2001 (2) :445-457.
  • 9张文爱,刘丽芳,李孝荣.基于粒子进化的多粒子群优化算法[J].计算机工程与应用,2008,44(7):51-53. 被引量:22
  • 10巩敦卫,张勇,张建化,周勇.新型粒子群优化算法[J].控制理论与应用,2008,25(1):111-114. 被引量:36

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部