期刊文献+

基于相反分类器的数据流分类方法 被引量:2

A Method for Classifying Data Stream Based on Reverse Classifier
下载PDF
导出
摘要 目前挖掘概念流动的数据流已经成为研究的热点。概念流动的数据流分类在预防信用卡欺诈,网络入侵发现等应用中具有重要的应用。本文定义了一种相反分类器来从错误中学习,提出了训练一个集合分类器来对具有概念流动的数据流进行分类的算法I WB。通过在合成数据集和benchmark上的实验,与Weighted Baggging算法13比较,表明我们的算法具有更高的准确度,更快地收敛到新的目标概念的性能。 Recently, mining data streams with concept drifts for actionable insights has become an important and challenging task for a wide range of applications including credit card fraud protection, network intrusion detection, etc. In this paper, we define the reverse classifier, which can help an algorithm to learn from error, and propose a IBW(improved weighted bagging) algorithm for classifying concept drift data streams using weighted ensemble classifiers. We evaluate IBW algorithm and Weighted Bagging algorithm on the STAGGER Concepts and synthetic data. The experiment results show that the proposed method have substantial advantage over Weighted Bagging approach in prediction accuracy, and it can converge to target concepts with high accuracy and speed.
出处 《计算机科学》 CSCD 北大核心 2006年第8期206-209,共4页 Computer Science
关键词 集合分类器 相反分类器 概念流动 Ensemble classifier, Reverse classifier, Concept drifting
  • 相关文献

参考文献13

  • 1Widmer G, kubat M. Learning in the presence of concept drift and hidden contests. Machine learning,1996,23:69-101
  • 2Domingos P, Hulten G. Mining High- speed Data Streams. In:Proc. Of the sixth Intl. Conf. on Knowledge Discovery and Data Mining, 2000. 71-80
  • 3Hulten G, Spencer L, Domingos P. Mining time-changing data Streams. In ACM SIGKDD,2001
  • 4Jin R, Agrawal G. Efficient Decision Tree Construction on Streaming Data.in proceedings of ACM SIGKDD, 2003
  • 5Cohen L,Avrahami G, Last M. Incremental Info-Fuzzy Algorithm for Real Time Data Mining of Non-Stationary Data Streams. In Proc. of the Fourth IEEE International Conf. on Data Mining(ICDM2004) ,2004. 39-43
  • 6Kuncheva L I. Classifier Ensembles for Changing Environments.In:Proc. 5^th Int. Workshop on Multiple Classifier Systems,2004 .1-15
  • 7Littlestone N,Warmuth M K. The weighted majority algorithm.Inform. Computation, 1994. 212-261
  • 8Littlestone N. Learning quickly when irrelevant attributes a bound: A new linear threshold algorithm. Machine learning.1988. 285-318
  • 9Kolrer J Z, Marcus A. Dynamic Weighted majority: A new Ensemble Method for Tracking Concept Drift. In:Proc. of the Third Int. IEEE Conf. on Data Mining,2003. 123-130
  • 10Fan Wei. Systematic data selection to Mine Concept-Drifting data Streams. In. the proceeding.of the Conf. KDD, 2004. 128- 137

同被引文献27

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部