期刊文献+

氢在碳纳米纤维中的低温吸附储存特性 被引量:1

The storage feature of hydrogen adsorption in carbon nanofibres at low temperature
下载PDF
导出
摘要 利用容积法测量了77K下氢在一种碳纳米纤维上的吸附等温线。采用分子模拟的方法模拟了77K下氢分子在平板状碳纳米纤维中的吸附,碳纳米纤维的石墨层层间距分别为0.335nm、0.6nm、0.9nm以及1.5nm。模拟结果表明:石墨层层间距为0.335nm的碳纳米纤维在77K下吸附储氢密度很难达到DOE的能量密度标准;当板间距为0.9nm时,系统吸附储氢的重量密度和体积密度均能达到最大,且在77K、1MPa下,能达到DOE的能量密度标准。 The volumetric method has been used to obtain the adsorption isotherm of gas phase hydrogen in one nanofiber at 77K. Hydrogen adsorption in platelet carbon nanofiber has been simulated with molecular simulation method at 77K, which pore width were respectively 0. 335nm, 0.6nm, 0.9nm and 1.5nm. The simulated results show that the uptake of hydrogen in carbon nanofiber that pore width is 0. 335nm hardly meet the energy density standard of DOE at low temperature. When pore width is 0.9nm, beth hydrogen storage weight density and volumetric density come to a head, and at 77K and 1MPa both can meet the energy density standard of DOE.
出处 《低温与超导》 CAS CSCD 北大核心 2006年第4期276-278,285,共4页 Cryogenics and Superconductivity
基金 上海市科学技术发展基金项目(0116nm044)
关键词 容积法 碳纳米纤维 吸附等温线 吸附储氢 分子模拟 Volumetric method, Carbon nanofiber, Adsorption isotherm, Hydrogen adsorption storage, Molecular simulation
  • 相关文献

参考文献8

  • 1Chambers A, Park C, Terry R, et al. Hydrogen storage in graphite nanofibers. J PHYS CHEM B, 1998, 102 (22) : 4253 -4256.
  • 2张超,顾安忠.碳质吸附剂吸附储氢的研究现状[J].太阳能学报,2003,24(1):121-128. 被引量:5
  • 3Lamari Darkrim F,Malbnmot P,Tartaglia G P. Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy, 2002, 27: 193- 202.
  • 4张超,鲁雪生,顾安忠.测定氢在碳质材料中吸附量的实验方法[J].上海交通大学学报,2004,38(10):1623-1626. 被引量:5
  • 5张超,鲁雪生,顾安忠.氢在碳纳米材料中吸附的实验研究[J].太阳能学报,2004,25(5):567-570. 被引量:1
  • 6Kaylene A, Siegmar R, Michael H, et al. Carbon nanostructures : an efficient hydrogen storage medium for fuel cells. Fuel Cells Bulletin, 2001,4(38):9 - 12.
  • 7Allen MP. Computer simulation of liquids, Oxford University Press: New York, 1987.
  • 8Chambers A, Rodriguez, NM, et al. Catalytic engineering of carbon nanostructures. Langmuir, 1995, 11 (10) : 3862-3866.

二级参考文献26

  • 1周理,周亚平.关于氢在活性炭上高压吸附特性的实验研究[J].中国科学(B辑),1996,26(5):473-480. 被引量:42
  • 2Dillion A C, Jones K M, Bekkedahl T A, et al.Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997, 386(6623): 377-379.
  • 3Chambers A, Park C, Baker R T K, et al. Hydrogen storage in graphite nanofibers[J]. J Phys Chem B, 1998, 102(22): 4253-4256.
  • 4Zhu H W, Ci L J, Chen A, et al. Hydrogen uptake in multi-walled carbon nanotubes at room temperature[A]. Mao Z Q, Veziroglu T N. Hydrogen Energy Progress XIII[C]. Beijing: International Hydrogen Association, 2000. 560-564.
  • 5Browning D J, Gerrard M L, Laakeman J B, et al.Investigation of the hydrogen storage capacities of carbon nanofibres prepared from an Ethylene precursor[A]. Mao Z Q, Veziroglu T N. Hydrogen Energy Progress ⅩⅢ[C]. Beijing: International Hydrogen Associat
  • 6Gupta B K, Awasthi K, Srivastava O N. New carbon variants: graphitic nanofibres and nanotubules as hydrogen storage materials[A]. Mao Z Q, Veziroglu T N. Hydrogen Energy Progress ⅩⅢ[C]. Beijing:International Hydrogen Association, 2000. 487-492.
  • 7Darkrim F L, Malbrunot P, Tartaglia G P. Review of hydrogen storage by adsorption in carbon nanotubes[J]. International Journal of Hydrogen Energy, 2002, 27:193-202.
  • 8Keller J U, Dreisbach F, Rave H, et al. Measurement of gas mixture adsorption equilibria of natural gas compounds on microporous sorbents[J]. Adsorption, 1999, 5:199-214.
  • 9Karl J, John A Z, Keith E G. The Lennard-Jones equation of state revisited [J]. Molecular Physics,1993, 78(3): 591-618.
  • 10Tetsu Kiyobayashi, Hiroyuki Takeshita, Hideaki Tanaka. Hydrogen adsorption in carbonaceous materials--How to determine the storage capacity accurately[J]. Journal of Alloys and Compounds, 2002,330: 666-669.

共引文献7

同被引文献10

  • 1文潮,金志浩,李迅,孙德玉,关锦清,刘晓新,林英睿,唐仕英,周刚,林俊德.炸药爆轰制备纳米石墨粉储放氢性能实验研究[J].物理学报,2004,53(7):2384-2388. 被引量:10
  • 2H uang C C, Chen H M, Chen C H, et al.[J]. Separation and Purification Technology, 2010,70 : 291-295.
  • 3Shindoa K, Kondo T, Arakawa M, et al. [J]. Journal of Alloys and Compounds, 2003,359 : 267-271.
  • 4Kim B J, Lee Y S, Park S J.[J]. International Journal of Hydro- gen Energy, 2008,33 : 4112-4115.
  • 5Yoo E,Gao L,Komatsu T,et al.[J]. Journal of Physical Chem istry B, 2004,108 : 18903-18907.
  • 6Park S J, Lee S Y. Hydrogen storage behaviors of platinum-sup- ported multi-walled carbon nanotubes [J]. International Journal of Hydrogen Energy, 2010,35 : 13048-13054.
  • 7Zubizarreta L, Menendez J A, Pis J J, et al. Improving hydrogen storage in Ni-doped carbon nanospheres [J]. International Journal of Hydrogen Energy, 2009,34: 3070-3076.
  • 8Kim B J, Park S J. Optimization of the pore structure of nickel/ graphite hybrid materials for hydrogen storage [J]. International Journal of Hydrogen Energy, 2011,36 : 648-653.
  • 9Kim H S, Lee H, Han K S, et al. Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotuhes [J]. Journal of Physical Chemistry B, 2005,109 :8983-8986.
  • 10Chen C Y,Lin K Y,Tsai W T,et al. Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite [J]. International Journal of Hydrogen Energy, 2010,35:5490 -5497.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部