期刊文献+

关于某些不可约特征标的核和拟核

On the Ker and the Quasikernel of some Irreducible Characters
下载PDF
导出
摘要 作者建立下述两个主要结果:(i)令G是有限非Abel群,N G.设n是固定的正整数,Kn(N)≠{1}(其中Kn(N)是N的下中心列的第n+1项),Irr(G|Kn(N))中的每个非线性的monolithic特征标的次数都被p整除,则N是p-幂零的和可解的;(ii)令G是个有限非Abel群,N G.设n是固定的正整数,Kn(N)≠{1},Irr(G|Kn(N))中的每个非线性的monolithic特征标的次数不被p整除,则N有正规Abel的Sylowp-子群.利用这两个结果,作者改进了关于核和拟核及p-闭群的某些结果. The authors establish two main results as follows: (i) Let N Δ← G , n be a fixed positive integer. denote the n + 1 term of the lown central serries of N by Kn (N). Suppose that the degree of every monolithic character in Irr(G|Kn (N))is divisible by p, then N is p-nilpotent and solvable; (ii) Let NΔ← G, n be a fixed positive integer. Suppose that the degree of every monolithic character in Irr( G | Kn (N) ) is not divisible by p, then N is p-closed with abelian Sylow p-subgroup. By using the two theorems, some results about the kernels and quasikernels of some irredusible characters are obtained.
作者 李木华
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期730-733,共4页 Journal of Sichuan University(Natural Science Edition)
关键词 拟核 不可约特征标 P-幂零群 kernel quasikernel irreducible characters p- nilpotent
  • 相关文献

参考文献5

  • 1Berkovich Y. Degrees, kernels and quasikemels of monolithic characters[J]. Proc. Amer. Math. Soc, 2000, 128:2311.
  • 2Berkovich Y. On Isacs' three character degrees theorem[J]. Proc. Amer. Math. Soc, 1997, 125:669.
  • 3Isaaacs I M. Characters of finite groups[ M]. New York: Dover, 1994.
  • 4Huppert B. Endliche Gruppen I [ M]. Berlin/Heidelberg/New York: Springer-Verlag, 1979.
  • 5Bercovich Y G, Zhmud E M. Character of finite groups[M]. Provldence:American Mathematical Society, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部