期刊文献+

基于Dempster-Shafer证据理论的组合基因预测 被引量:1

Combining Gene Predictions Using Dempster-Shafer Theory of Evidence
下载PDF
导出
摘要 使用Dempster-Shafer证据推理理论组合多个基因预测程序可以组合来自多个信息源的基因预测信息,多个基因预测程序组合后的预测效果明显好于单个基因预测程序的效果. Although the gene prediction programs have greatly improved in the recent years, our ultimate goal is far to be met. A new way to computational gene prediction is clear needed. The prediction information from multiple sources can be combined by using Dempster-Shafer framework as an appropriate theory for modelling combination of gene predictions, and the results are much better than single gene prediction program.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期899-902,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(#60374025) 高等学校博士学科点专项科研基金(#20030610018)
关键词 DNA序列 基因组 基因预测算法 Dempster-Sharer证据理论 预测外显子的概率分值 DNA sequence genome gene prediction programs Dempster-Shafer theory of evidence score of predicted exon
  • 相关文献

参考文献13

  • 1BURGE C, KARLIN S. Prediction of complete gene structures in human genomic DNA[J]. J. Mol. Biol, 1997, 268:78-94.
  • 2LUKASHIN A V, BORODOVSKY M. GeneMark. hmm: New solutions for gene-finding[J]. Nucleic.Acids Res, 1998,26: 1107- 1115.
  • 3KORGH A. Proceedings of the Fifth International Conference on Intelligent Systems for Molecular Biology[ C]. Orlando:Academic Press, 1997. 179 - 186.
  • 4SOLOVYEV V V, SALAMOV A A, Lawrence C B. Identification of human gene structure using lineardiscriminant functions and dynamic programming[J]. Proe. Int. Conf. Intell. Syst. Mol. Biol, 2001, 3:367-375.
  • 5ZHANG M Q. Identification of protein coding regions in the human genome by quadratic discriminantanalysis[J]. Proc.Natl. Acad. Sci, 1997, 94: 565-568.
  • 6ROGIC S, MACKWORTH A K, OUELLETTE F B. Evaluation of gene-finding programs on mammaliansequences[J].Genome Research, 2001, 11: 817-832.
  • 7BURSET M, GUIGO R. Evaluation of gene structure prediction programs[J]. Genomics, 1996, 34:353 -367.
  • 8MURAKAMI K, TAKAGI T. Gene recognition by combination of several gene-finding prcgrams[J]. Bioinformaties, 1998,14: 665- 675.
  • 9PAVLOVIC V, GARG A, KASIF S. A bayesian framework for combining gene predictions[ J ]. Bioinformaties, 2002, 18:19 - 27.
  • 10ROGIC S, OUELLETTE B F F, MACKWORTH A K. Improving gene recognition accuracy by combiningpredietions from two gene-finding programs[J]. Bioinformaties, 2002, 18:1034 - 1045.

同被引文献9

  • 1Gilio A. Probabilistic reasoning under coherence in System P[J]. Ann Math Artificial Intelligence, 2002, 34(1-3): 5.
  • 2Halpern J Y. Reasoning about uncertainty[ M]. Cambridge: MIT Press, 2003.
  • 3Lukasiewicz T. Probabilistic default reasoning with conditional constraints[J]. Ann Math Artificial In telligence, 2002, 34(1-3): 38.
  • 4Lukasiewicz T. Nonmonotonic probabilistic logics [J]. Artificial Intelligence, 2005, 168: 119.
  • 5Friedman N, Halpern J Y. Plausibility measures and default reasoning[j]. Journal of the ACM, 2001, 48 (4) : 648.
  • 6Michael Freund. Preferential orders and plausibility measures[J]. J Logic Computat, 1998, 8(2):147.
  • 7Halpern J Y. Defining relative likelihood in partially ordered preferential structures [J ]. Journal of A I Research, 1997, 7: 1.
  • 8Halpern J Y. Conditional plausibility measures and Bayesian networks [J]. Journal of A I Reseaeh, 2001, 14: 359.
  • 9李世伦.基于模糊推理方法的企业预警模型[J].四川大学学报(自然科学版),2007,44(4):782-784. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部