期刊文献+

一种新的基于自组织神经网络的运动估计算法 被引量:1

A New Motion Estimation Algorithm Based on Self-Organizing Neural Network
下载PDF
导出
摘要 提出了一种新的基于自组织网络的CFSSOM-VQ运动估计算法,新的帧间预测编码方案采用基于自组织特征映射算法(SOM)的矢量量化(VQ)作为帧间预测,以取代目前常用的运动补偿帧间预测(ME+MC).并对SOM算法进行了改进,提出了一种分类频率敏感自组织特征映射(CFSSOM)算法.将该算法应用到会议电视视频编码的实验结果表明,与ME+MC算法相比,CFSSOM-VQ算法具有更好的预测编码性能. To improve the performance of interframe prediction coding, this paper presented a new motion estimation algorithm based on self-organizing feature map (SOM) algorithm. We used vector quantization (VQ) to predict present video frame instead of the general motion estimation and motion compensation (ME + MC) algorithm. Then a classified frequency sensitive self-organizing feature map (CFSSOM) was proposed for the codebook training. Experiment results showed that CFSSOM-VQ algorithm had better prediction coding performance than ME + MC algorithm for conference video coding.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第4期119-122,共4页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(60271014)
关键词 运动估计 自组织神经网络 自组织特征映射算法 矢量量化 视频编码 motion estimation self-organizing neural network self-organizing feature maps vector quantization video coding
  • 相关文献

参考文献6

  • 1KOHONEN T.An introduction to neural computing[J].Neural Networks,1988,1 (3):110-118.
  • 2GAFIYCHUK V V,DATSKO B Y,IZMAYLOVA J.Analysis of data clusters obtained by self-organizing methods[J].Physicalstatistical Mechanics and It's Applications,2004,341 (10):547-551.
  • 3FANG W C,SHEU B J.A VLSI neural processor for image data compression using self-organizing networks[J].IEEE Trans on Neural Networks,1992,3(5):1112-1118.
  • 4SHIGEI N,MIYAJIMA H,MAEDA M.Numerical evaluation of incremental vector quantization using stochastic relaxation[J].IEICE Trans on Fundamentals of Electronics Communications and Computer,2004,87(9):2364-2370.
  • 5TAN X Y,CHEN S C,ZHOU Z H.Robust face recognition from a single training image per person with Kernel-based SOM-face[J].Advances in Neural Networks,2004,3173:858-862.
  • 6NASRABADI N M,FENG Y.Vector quantization of images based upon the Kohonen self-organizing feature maps[C]//International Joint Conference on Neural Networks.San Diego,CA,1988,1:101-118.

同被引文献56

引证文献1

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部