摘要
提出了一种新的基于自组织网络的CFSSOM-VQ运动估计算法,新的帧间预测编码方案采用基于自组织特征映射算法(SOM)的矢量量化(VQ)作为帧间预测,以取代目前常用的运动补偿帧间预测(ME+MC).并对SOM算法进行了改进,提出了一种分类频率敏感自组织特征映射(CFSSOM)算法.将该算法应用到会议电视视频编码的实验结果表明,与ME+MC算法相比,CFSSOM-VQ算法具有更好的预测编码性能.
To improve the performance of interframe prediction coding, this paper presented a new motion estimation algorithm based on self-organizing feature map (SOM) algorithm. We used vector quantization (VQ) to predict present video frame instead of the general motion estimation and motion compensation (ME + MC) algorithm. Then a classified frequency sensitive self-organizing feature map (CFSSOM) was proposed for the codebook training. Experiment results showed that CFSSOM-VQ algorithm had better prediction coding performance than ME + MC algorithm for conference video coding.
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2006年第4期119-122,共4页
Journal of Hunan University:Natural Sciences
基金
国家自然科学基金资助项目(60271014)
关键词
运动估计
自组织神经网络
自组织特征映射算法
矢量量化
视频编码
motion estimation
self-organizing neural network
self-organizing feature maps
vector quantization
video coding