期刊文献+

一种基于信息几何的支持向量回归模型选择新标准

A New Model Selection Criterion for Support Vector Regression Based on Information Geometry
下载PDF
导出
摘要 针对现有模型选择标准无法对支持向量回归(SVR)模型选择过程给出明确几何意义的弱点,提出了一种基于信息几何理论的模型选择新标准.它将模型空间看成是一个流形,将模型复杂度等价于其所能覆盖的概率分布个数,模型拟合度则视为样本的真实分布与模型分布之间的分散度,由此直观地解释了SVR的求解过程,并明确了模型选择的几何意义. Since the entire extent model selection criterions for Support Vector Regression (SVR) were short of clear understanding of geometric significances, a new model selection criterion based on the theory of information geometry was proposed in this paper. The new criterion regarded the model space as a manifold and computed the complexity by counting the number of the distinguishable probability distributions that a model can generate and estimated the fitness by using the divergence between the true distribution and model distribution. Therefore, it explained the SVR intuitionally and gave the process of model selection with a clear geometric significance.
出处 《江南大学学报(自然科学版)》 CAS 2006年第4期379-382,共4页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家"863"计划资助项目(2002AA412120)
关键词 支持向量回归 模型选择 信息几何 support vector regression model selection information geometry
  • 相关文献

参考文献7

  • 1Vapnik V.The Nature of Statistical Learning Theory[M].New York:John Wiley,1995.
  • 2VapnikV.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3Amari S.Differential Geometry Method in Statistics[M].Berlin:Springer,1985.
  • 4Murata N,Yoshizawa S,Amari S.Network information criterion-determing the number of hidden units for an artificial neural net work model[J].IEEE Transactions on Neural Networks,1994,5(6):865-872.
  • 5陈维恒,李兴校.黎曼几何引论(上)[M].北京:北京大学出版社,2002.
  • 6Myung I J,Balasubramanian V.A Counting Probability Distributions:Differential Geometry and Model Selection[C]/ / Proceedings of the National Academy of Science.Stanford:High wire Press,1997.11170-11175.
  • 7Zhu Huaiyu,Richard R.Information Geometry Measurements of Generalization[R].Technical Report NCRG/4350.Birmingham:Aston University,1995.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部