期刊文献+

基于数据挖掘技术的全局优化算法

The Global Algorithms Based on Data Mining
下载PDF
导出
摘要 在过程系统综合中,许多问题属于非线性规划(NLP)和混合整数非线性规划(MINLP)范畴.它们大都具有奇异、多峰、刚性等特性.人们很难有效地得到它们稳定的全局最优解.而知识性、经验性约束使基于梯度方向的Newton方法无法有效地获取该类问题的全局最优解.通常只能得到该类问题的局部最优解.遗传算法的随机性虽为求取NLP和MINLP问题的全局最优解提供了可能,但是随机过程中的盲目性及"伪穷举"性却又限制了该算法的搜索效率.针对过程系统综合问题的特殊性,在信息提取技术对搜索空间进行充分数据挖掘的基础上,用遗传算法的随机扰动来跳出局部极值陷井,获得全局最优解.对反应器网络综合问题的求解,显示了信息提取技术与遗传算法相结合求取全局最优解的能力. Many problems in the process system synthesis belong to the non-linear problem (NLP) and mixed integrated non-linear problem (MINLP) category and they are almost singular, multipeaks and rigid. There is no effective means to get their stable global-optimal. Those solutions belong to local-optimal because Newton method based on grads, which subject to knowledge and experience didn't effectively get the solution domains of processing system synthesis. Although it is possible to get global-optimal by means of the randomicity of genetic algorithms, blindness and pseudo-enumeration of the randomicity may restrict the method search efficiency. The paper presents a way to combine information selection with genetic algorithms. Based on data mining in possible domains, the randomicity of genetic algorithms is used to dap out of the local-optimal trap. The test reactor networks synthesis showed that the method is effective and useful.
作者 张慧平 戴波
出处 《江南大学学报(自然科学版)》 CAS 2006年第4期485-488,共4页 Joural of Jiangnan University (Natural Science Edition) 
关键词 非线性规划 遗传算法 全局优化 数据挖掘 MINLP Genetic Algorithms Global Optimization Data Mining
  • 相关文献

参考文献8

  • 1麻德贤.过程系统工程导论[M].北京:烃加工出版社,1992.
  • 2GoldBerg D E.Genetic Algorithms in Search,Optimization,and Machine Learning[M].New York:Addison-Wesley,1989.
  • 3Grossmann I E.Mixed-integer programming approach for the synthesis of integrated process flowsheets[J].Comput Chem Engng,1985,9(5):463-483.
  • 4Quesada I,Grossmann I E.An LP/NLP based branch and bound algorithm for convex MINLP optimization problems[J].Comput Chem Engng,1992,16:937-947.
  • 5任庆生,叶中行,曾进.进化算法的收敛速度[J].上海交通大学学报,1999,33(6):671-673. 被引量:8
  • 6Manousiouthakis V,Sourlas D A.Global optimization approach for to rationally constrained rational programming[J].Chem Engng Comm,1992,115:127.
  • 7Costas D Marananas,Floudas C A.Global optimization in generalized geometric programming.comput[J].Chem Engng,1997,21(4):351-369.
  • 8Ryoo H S,Sahinidis N V.Global optimization of non convex NLPs and MINLPs with application in process design[J].Comput Chem Engng,1995,19(5):551.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部