摘要
本文讨论了生物上一类有时滞和扩散(迁移)的离散复合种群模型.利用离散系统相关结果分析了该模型的正不动点的类型及稳定性,并用中心流形方法对原系统降维从而讨论了它的Hopf分岔问题以及扩散和时滞对种群生态学的意义.
In this paper we study Hopf bifurcation i:a a discrete metapopulation model with delay. The qualitative property and stability of fixed points are analyzed. By using central manifold method, we obtain the conditions under which Hopf bifurcation occurs. In view of ecology, we also discuss the metapopulation on which the delay and dispersion have influence.
出处
《应用数学学报》
CSCD
北大核心
2006年第4期747-754,共8页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(10371136号)资助项目.
关键词
复合种群
离散系统
不动点
稳定性
HOPF分岔
灭绝
Metapopulation
discrete time
equilibrium
Hopf bifurcation
stability extinction