期刊文献+

二部多重图的P_(4k-1)-因子分解 被引量:1

原文传递
导出
摘要 如果二部多重图λK_(m,n)的边集可以划分为λK_(m,n)的P_v-因子,则称λK_(m,n)存在P_v-因子分解.当v是偶数时,Ushio,Wang和本文的第2作者给出了λK_(m,n)存在P_v-因子分解的充分必要条件.同时提出了当v是奇数时λK_(m,n)存在P_v-因子分解的猜想,但是至今为止仅知当v=3时该猜想成立.对于正整数k,本文证明λK_(m,n)存在P_(4k-1)-因子分解的充分必要条件是:(1)(2k-1)m≤2kn,(2)(2k-1)n≤2km,(3)m+n≡0(mod 4k-1),(4)λ(4k-1)mn/[2(2k- 1)(m+n)]是整数,即证明:对于任何正整数k,当v=4k-1时上述猜想成立.
作者 王建 杜北梁
出处 《中国科学(A辑)》 CSCD 北大核心 2006年第8期928-937,共10页 Science in China(Series A)
基金 国家自然科学基金(批准号:10571133)资助项目 江苏省高校自然科学基金项目(04KJD110152)
  • 相关文献

参考文献9

  • 1Ushio K.G-designs and related designs.Discrete Math,1993,116:299-311
  • 2Bondy J A,Murty U S R.Graph Theory with Applications.London Basingstoke:Macmillan Press,1976
  • 3Yamamoto S,Ikeda H,Shige-eda S,et al.Design of a new balanced file organization scheme with the least redundancy.Information and Control,1975,28:156-175
  • 4Wang H.P2k-factorization of a complete bipartite graph.Discrete Math,1993,120:307-308
  • 5Du B L.P2k-factorization of complete bipartite multigraphs.Austral.J.Combin,2000,21:197-199
  • 6Ushio K.P3-factorization of complete bipartite graphs.Discrete Math,1988,72:361-366
  • 7Wang J,Du B L.P3-factorization of complete bipartite multigraphs and symmetric complete bipartite multi-digraphs.Utilitas Math,2003,63:213-228
  • 8杜北梁,王建.完全二部图的P_(4k-1)-因子分解[J].中国科学(A辑),2005,35(2):206-215. 被引量:3
  • 9杜北梁,王建.完全二部图存在路因子分解的Ushio猜想的证明[J].中国科学(A辑),2006,36(1):109-120. 被引量:2

二级参考文献23

  • 1杜北梁,王建.完全二部图的P_(4k-1)-因子分解[J].中国科学(A辑),2005,35(2):206-215. 被引量:3
  • 2Ushio K. G-designs and related designs. Discrete Math, 1993, 116:299-311.
  • 3Bondy J A, Murty U S R. Graph Theory with Applications. London: Macmillan Press, 1976.
  • 4Yamamoto S, Ikeda H, Shige-eda S, et al. Design of a new balanced file organization scheme with the least redundancy, information and Control. 1975.28:156-175.
  • 5Yamamoto S, Tazawa S, Ushio K, et al. Design of a generalized balanced multiple-valued file organization scheme with the least redundancy. ACM Trans Database Systems, 1979, 4:518-530.
  • 6Ushio K, P3 factorization of complete bipartite graphs. Discrete Math, 1988, 72; 361-366.
  • 7Martin N. Complete bipartite factorisations by complete bipartite graphs. Discrete Math, 1997, 167 168:461 -480.
  • 8Du B L. K1,p^2-factorization of complete bipartite graphs, Discrete Math, 1998, 187:273-279.
  • 9Du B L, Wang J. K1,k-factorizations of complete bipartite graphs, Discrete Math, 2002, 259:301-306.
  • 10Wang H. P2k^-factorization of a complete bipartite graph. Discrete Math, 1993, 120:307-308.

共引文献2

同被引文献9

  • 1杜北梁,王建.完全二部图的P_(4k-1)-因子分解[J].中国科学(A辑),2005,35(2):206-215. 被引量:3
  • 2杜北梁,王建.完全二部图存在路因子分解的Ushio猜想的证明[J].中国科学(A辑),2006,36(1):109-120. 被引量:2
  • 3Ushio K. G-designs and related designs. Discrete Math, 1993, 116:299-311.
  • 4Bondy J A, Murty U S R. Graph Theory with Applications. London Basingstoke: Macmillan Press, 1976.
  • 5Yamamoto S, Ikeda H, Shige-eda S, et al. Design of a new balanced file organization scheme with the least redundancy. Information and Control, 1975, 28:156-175.
  • 6Wang H. P2k-factorization of a complete bipartite graph. Discrete Math, 1993, 120:307-308.
  • 7Du B L. P2k-factorization of complete bipartite multigraphs. Austral J Combin, 2000, 21:197-199.
  • 8Ushio K. P3-factorization of complete bipartite graphs. Discrete Math, 1988, 72:361-366.
  • 9Wang J, Du B L. P3-factorization of complete bipartite multigraphs and symmetric complete bipartite multi-digraphs. Utilitas Math, 2003, 63:213-228.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部