期刊文献+

非椭圆非线性Schr(o|¨)dinger方程H^s整体解

Global H^S-Solutions of Generalized Nonlinear Schr(o|¨)dinger Equations
下载PDF
导出
摘要 对含L2次临界指数非线性项的非椭圆型Schrodinger方程柯西问题进行了讨论,用Strichartz不等式和压缩映像原理证明了方程有HS局部解,由L2守恒律得到方程的HS整体解. In the present paper, the nonlinear nonelliptic Schrbdinger equation with L^2 subcritical power is studied. With the aid of Strichartz' inequality, the author proves the existence of global H^s-solutions u(t) of nonelliptic NLS equation and u(t) ∈ C (R, H^s(R^n)) if the initial date ψ0 ∈ H^s (R^n), 0 ≤ s ≤ 1.
作者 朱继德
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第4期477-490,共14页 Chinese Annals of Mathematics
关键词 非椭圆型Schroedinger方程 柯西问题 BESOV空间 整体解 Nonelliptic NLS equation, Cauchy problem, Besov space,Global solution
  • 相关文献

参考文献16

  • 1Bergh J. and ofstrom J. L., Interpolation Spaces [M], Springer, 1976.
  • 2Bourgain J., Global Solutions of Nonlinear Schrodinger Equations [M], AMS Colloquium Publications 46, 1999.
  • 3Cazenave T. and Weissler F. B., The Cauchy problem for the critical nonlinear Schrodinger equation in H^s [J], Nonlinear Anal. TMA, 1990, 14:807-836.
  • 4Cazenave T., Semilinear SchrSdinger Equations [M], Courant Institute of Mathematical Sciences, New York: American Mathematical Society, 2003.
  • 5Ghidaglia J. M. and Saut J. C., Nonelliptic Schrodinger equations [J], J. Nonlin. Sci.,1993, 3:169-195.
  • 6Ghidaglia J. M. and Saut J. C., Nonexistence of travelling wave solutions to nonelliptic nonlinear Schrodinger equations [J], J. Nonlin. Sci., 1996, 6:139-145.
  • 7Ginibre J. and Velo G., On a class of nonlinear Schrodinger equations I: The Cauchy problem [J], J. Funct. Anal., 1979, 32:1-32.
  • 8Kenig C. E., Ponce G. and Vega L., Smoothing effects and local existence theory for the generalized nonlinear Schrodinger equations [J], Inventiones mathematicae, 1998,134:489-545.
  • 9Pecher H., Solutions of semilinear Schrodinger equations in H^s [J], Ann. Inst. H.Poincare, Phy. Theor., 1997, 67(3):259-296.
  • 10Strichartz R. S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations [J], Duke Math. J., 1977, 44:705-714.

二级参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部