期刊文献+

一种有效的隐私保护关联规则挖掘方法 被引量:53

An Effective Method for Privacy Preserving Association Rule Mining
下载PDF
导出
摘要 隐私保护是当前数据挖掘领域中一个十分重要的研究问题,其目标是要在不精确访问真实原始数据的条件下,得到准确的模型和分析结果.为了提高对隐私数据的保护程度和挖掘结果的准确性,提出一种有效的隐私保护关联规则挖掘方法.首先将数据干扰和查询限制这两种隐私保护的基本策略相结合,提出了一种新的数据随机处理方法,即部分隐藏的随机化回答(randomizedresponsewithpartialhiding,简称RRPH)方法,以对原始数据进行变换和隐藏.然后以此为基础,针对经过RRPH方法处理后的数据,给出了一种简单而又高效的频繁项集生成算法,进而实现了隐私保护的关联规则挖掘.理论分析和实验结果均表明,基于RRPH的隐私保护关联规则挖掘方法具有很好的隐私性、准确性、高效性和适用性. Privacy preservation is one of the most important topics in data mining. The purpose is to discover accurate patterns without precise access to the original data. In order to improve the privacy preservation and mining accuracy, an effective method for privacy preserving association rule mining is presented in this paper. First, a new data preprocessing approach, Randomized Response with Partial Hiding (RRPH) is proposed. In this approach, the two privacy preserving strategies, data perturbation and query restriction, are combined to transform and hide the original data. Then, a privacy preserving association rule mining algorithm based on RRPH is presented. As shown in the theoretical analysis and the experimental results, privacy preserving association rule mining based on RRPH can achieve significant improvements in terms of privacy, accuracy, efficiency, and applicability.
出处 《软件学报》 EI CSCD 北大核心 2006年第8期1764-1774,共11页 Journal of Software
基金 国家自然科学基金~~
关键词 隐私保护 数据挖掘 关联规则 频繁项集 随机化回答 privacy preservation data mining association rule frequent itemset randomized response
  • 相关文献

参考文献14

  • 1Verykios VS,Bertino E,Fovino IN,Provenza LP,Saygin Y,Theodoridis Y.State-of-the-Art in privacy preserving data mining.SIGMOD Record,2004,33(1):50-57.
  • 2Han J,Kamber M.Data Mining:Concepts and Techniques.Beijing:China Machine Press,2001.
  • 3Agrawal R,Srikant R.Privacy-Preserving data mining.In:Weidong C,Jeffrey F,eds.Proc.of the ACM SIGMOD Conf.on Management of Data.Dallas:ACM Press,2000.439-450.
  • 4Rizvi SJ,Haritsa JR.Maintaining data privacy in association rule mining.In:Bernstein PA,Ioannidis YE,Ramakrishnan R,Papadias D,eds.Proc.of the 28th Int'l Conf.on Very Large Data Bases.Hong Kong:Morgan Kaufmann Publishers,2002.682-693.
  • 5Agrawal S,Krishnan V,Haritsa JR.On addressing efficiency concerns in privacy-preserving mining.In:Lee YJ,Li JZ,Whang KY,Lee D,eds.Proc.of the 9th Int'l Conf.on Database Systems for Advanced Applications.LNCS 2973,Jeju Island:Springer-Verlag,2004.113-124.
  • 6Evfimievski A.Randomization in privacy preserving data mining.SIGKDD Explorations,2002,4(2):43-48.
  • 7Evfimievski A,Srikant R,Agrawal R,Gehrke J.Privacy preserving mining of association rules.In:Hand D,Keim D,Ng R,eds.Proc.of the 8th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.Edmonton:ACM Press,2002.217-228.
  • 8Saygin Y,Verykios VS,Clifton C.Using unknowns to prevent discovery of association rules.ACM SIGMOD Record,2001,30(4):45-54.
  • 9Oliveira SRM,Zaiane OR.Privacy preserving frequent itemset mining.In:Clifton C,EstivillCastro V,eds.Proc.of the IEEE Int'l Conf.on Data Mining Workshop on Privacy,Security and Data Mining.Maebashi:IEEE Computer Society,2002.43-54.
  • 10Kantarcioglu M,Clifton C.Privacy-Preserving distributed mining of association rules on horizontally partitioned data.IEEE Trans.on Knowledge and Data Engineering,2004,16(9):1026-1037.

同被引文献501

引证文献53

二级引证文献470

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部