期刊文献+

一类具有Lipschitz条件的非线性变分包含问题解的存在性和Ishikawa迭代逼近问题 被引量:1

Existence and Ishikawa Iterative Approximation Problem of Solutions for Certain Nonlinear Variational Inclusions with Lipschitz Condition
下载PDF
导出
摘要 研究实自反Banach空间中一类具有Lipschitz条件的强增生型变分包含问题g(u)∈D(ηφ)〈Tu-Au-f,η(υ,g(u))〉≥φ(g(u))-φ(υ)υ∈X*得到了其解的存在性、唯一性及其具有混合误差项的Ishikawa迭代程序的收敛性的一些相关结果. The purpose of this paper is to study a class of variational inclusions problem with Lipschitz condition and strongly accretive type mappings in real reflexive Banach spaces. {g(u)∈D( ηφ) 〈Tu-Au-f, η(v,g(u))〉≥φ(g(u))-φ(v) A↓v∈X It is obtained that some corresponding results for existence and uniqueness of solutions to this class of variational inclusions and the convergence of Ishikawa iteration process.
作者 谷峰
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期20-24,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 浙江省自然科学基金资助项目(Y605191) 黑龙江省自然科学基金资助项目(A0211) 浙江省教育厅科研基金资助项目(20051897) 杭州师范学院引进人才科研启动基金资助项目(021301).
关键词 变分包含 强增生映象 Η-次微分 带混合误差项的Ishikawa迭代序列 variational inclusion strongly accretive mapping η-subdifferential Ishikawa iterative sequence with mixed errors
  • 相关文献

参考文献20

  • 1张石生.Banach空间中增生型变分包含解的Mann和Ishikawa迭代逼近[J].应用数学和力学,1999,20(6):551-558. 被引量:64
  • 2Hassouni A,Moudafi A.A Perturbed Algorithm for Variational Inclusions[J].J Math Anal Appl,1994,185(3):706-721.
  • 3Ding X P.Perturbed Proximal Point Algorithms for Generalized Quasivariational Inclusions[J].J Math Anal Appl,1997,210(1):88-101.
  • 4Ding X P.Generalized Strongly Nonlinear Quasivariational Inequalities[J].J Math Anal Appl,1993,173(2):557-587.
  • 5Kazmi K R.Mann and Ishikawa Type Pertured Iterative Algorithms for Generalized Quasivariational Inclusions[J].J Math Anal Appl,1997,209(2):572-584.
  • 6Zeng L C.Iterative Algorithms for Finding Approximate Solutions for General Strongly Nonlinear Variational Inequalities[J].J Math Anal Appl,1994,187(2):352-360.
  • 7Noor M A.General Variational Inequalities[J].Appl Math Lett,1998,1(2):119-122.
  • 8Noor M A.An Iterative Algorithm for Variational Inequalities[J].J Math Anal Appl,1991,158(3):448 -455.
  • 9Siddiqi A H,Ansari Q H.General Strongly Nonlinear Variational Inequalities[J].J Math Anal Appl,1992,166(2):386-392.
  • 10Siddiqi A H,Ansari Q H,Kazmi K R.On Nonlinear Variational Inequalities[J].Indian J Pure Appl Math,1994,25(4):969-973.

二级参考文献22

  • 1曾六川.关于求完全广义强的非线性拟变分不等式的逼近解的迭代算法[J].应用数学和力学,1994,15(11):1013-1024. 被引量:27
  • 2Chang S S,J Math Anal Appl,1997年,216卷,1期,94页
  • 3Ding Xieping,J Math Anal Appl,1997年,210卷,1期,88页
  • 4Liu L S,J Math Anal Appl,1995年,194卷,1期,114页
  • 5Zeng L C,J Math Anal Appl,1994年,187卷,2期,352页
  • 6Ding Xieping,J Math Anal Appl,1993年,173卷,2期,577页
  • 7张石生,变分不等式和相补问题理论及应用,1991年
  • 8游兆永,非线性分析,1991年
  • 9Chang S S,Topological Methods Nonlinear Anal
  • 10Chang S S,J Math Anal Appl,2000年,248卷,438页

共引文献70

同被引文献12

  • 1赵芬,何震.非线性增生算子方程带误差的三重迭代及其收敛性分析[J].应用泛函分析学报,2006,8(2):164-170. 被引量:4
  • 2Noor M A. Three-step Iterative Algorithms for Multivalued Quasi-varitional Inclusions [J]. J Math Anal Appl, 2001, 255:589 - 604.
  • 3Noor M A. Some Preditor-corrector Algorithms for Multivalued Variational Inequalities [J]. J Optim Theory Appl, 2001, 108:659-670.
  • 4Muhammad A Slam Ncor, Themistocles M, Rassias. Three-step Iteration for Nonlinear Accretive Operator Equations [J].J Math Anal Appl, 2002, 274:59-68.
  • 5Xu B L, NOOR MA. Fixed Point Iterations for Asymptotically Nonexpansive Mappings in Banach spaces [J].J Math Anal Appl, 2002, 267:444-453.
  • 6Liu L S. Ishikawa and Mann Iterative Processes with Errors for Nonlinear Strongly Accretive Mappings in Banach Spaces [J]. J Math Anal Appl, 1995, 194: 114-125.
  • 7Chang S S. On Chidume's Open Questions and Approximation Solutions of Multivalued Strongly Accretive Mappings Equations in Banach Space [J]. J Math Anal Appl, 1997, 216: 94- 111.
  • 8Huang Nan Jing, Cho Y J, Kang S M, et ai. Ishikawa and Mann Iterative Processes with Errors for Set-Valued Strongly Accretive and φ- Hemicontractive Mappings [J]. Math Comput Modelling, 2000, 32:791 -801.
  • 9胡洪萍.广义Φ-伪压缩型映像迭代序列的收敛性问题[J].纺织高校基础科学学报,2007,20(4):400-403. 被引量:3
  • 10刘俊先,马建珍.任意Banach空间中的非线性Lipschitz强伪压缩算子不动点的迭代逼近[J].南昌大学学报(理科版),2008,32(1):25-27. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部