期刊文献+

完备正交V-系统与点云数据拟合 被引量:8

Complete Orthogonal Function System V and Points cloud Fitting
下载PDF
导出
摘要 提出了对点云数据进行曲面拟合的一种新方法,它基于一类L2[0,1]上完备正交的函数系(称之为V-系统)。V-系统由分段多项式组成,它包括各个层次的间断函数,具有多分辨分析特性和局部性。给出了k次V-系统(k=0,1,2,3)的具体表达式;利用有限项Fourier-V级数展开式,高效地生成点云数据显示的被测量对象的几何造型。检测例子表明,这种方法对很广泛遇到的一类问题而言,处理过程简单、速度快、精度高。 A novel approach to points cloud fitting was given. The work is based on a class of complete orthogonal k-degree polynomials in L^2[0, 1] (called V-system). V-system which is composed of piecewise polynomials including every degree polynomials has advantageous properties of multi-resolution analysis and local. The expression of k-degree (k = 0,1,2,3) V-system was given, which effectively generated geometrical sculpt from surveying object displayed of points cloud by using limited number items of Fourier-V progression. The experimentations indicate that this approach has simple processing, fast calculating and high precision for some ordinary project.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第8期2109-2113,共5页 Journal of System Simulation
基金 国家"九七三"项目(G2002CB3121042004CB318000) 国家自然科学基金重点项目(60133020)) 北京市教委科技发展计划面上项目(km200610009011)
关键词 完备正交函数系 点云 V-系统 多小波 complete orthogonal function system points cloud V-system multi-wavelet
  • 相关文献

参考文献13

  • 1Gu Xianfeng,Steven J.Gortler,Hugues Hopper.Geometry Images,ACM transactions on Graphics[C]//Proceedings of ACM SIGGRAPH 2002,347-354.
  • 2齐东旭 冯玉瑜.关于正交完备系{U}[J].吉林大学自然科学学报,1984,(2):21-31.
  • 3Qi Dong-xu,Feng Yu-yu.A sequence of piecewise orthogonal polynomials[J].SIAM J.Math,Anal (S0036-1410),1984,15(4):834-844.
  • 4齐东旭.关于一类非连续的正交函数及其应用的探讨[J].高校应用数学学报(A辑),1990,5(1):39-46. 被引量:9
  • 5宋瑞霞,马辉.信号多分辨分析的一类新的正交基[J].科学技术与工程,2005,5(23):1807-1812. 被引量:7
  • 6Song Rui-xia,Ma Hui,Qi Dong-xu.Complete Orthogonal V-system Its Applications[C]//Macao:Proceedings of the fourth international conference on Wavelet Analysis and its Applications,2005.
  • 7Ma Hui,Song Rui-xia,Qi Dong-xu.Orthogonal complete U-System and its application in CAGD[C]//Pusan,Korea:1st Korea-China Joint Conference on Geometric and Visual Computing,2005,31-36.
  • 8Cai Zhan-chuan,Sun Wei,Xiong Chang-zhen,Qi Dong-xu.Watermarking of two-dimensional engineering graph based on the orthogonal complete U-system[C]//Hong Kong:The Ninth International Conference on Computer Aided.2005.
  • 9Copyright FarField Technology 2001,Page last updated[OL/EB].(2002-8)[2005-12].http://www.farfieldtechnology.com/products/toolbox/pointcloud/
  • 10EXTERNAL PROJECT:Sachsenross,Germany,Laser Measurement System.Page last updated[OL/EB].06/06/2005.http://www.riegl.com/terrestrial_scanners/3d_projects_/external_projects_/sachsenross_/hannover_sachsenross.htm,2005-12.

二级参考文献13

  • 1[1]郑君里,应启珩,杨为理.信号与系统(第二版).北京:高等教育出版社,2004:317-341
  • 2[2]Suslov S K. An introduction to basic fourier series(Chapter 9).Kluwer Academic Publishers,2003
  • 3[3]Search Results for Orthogonal, http://www-groups. dcs. stand. ac. uk/~ history/
  • 4[5]Donovan G C, Geronimo J S, Hardin D P. Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J Math Anal, 1999;30(5): 1029-1056
  • 5[6]Donovan G C, Geronimo J S, Hardin D P. Squeezable orthogonal bases: accuracy and smoothness, SIAM J Numer Anal,2002; 40(3): 1077-1099
  • 6[9]Feng T Y, Qi D X. A sequence of piecewise orthogonal polynomials. SIAM J Math Anal, 1984;15(4): 834-844
  • 7齐东旭,吉林大学自然科学学报,1984年,2期,21页
  • 8齐东旭,中国科学技术大学学报,1983年,增刊,10页
  • 9郑维行,沃尔什函数理论与应用,1983年
  • 10关肇直,沃尔什函数与沃尔什变换,1982年

共引文献23

同被引文献90

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部