期刊文献+

基于EELG理论与Dymola环境的多学科系统集成仿真 被引量:2

Simulating Integration of Multifield Systems Based on EELG Theory and Dymola Platform
下载PDF
导出
摘要 多学科系统的设计与开发,要求跨能量域的统一建模与仿真。基于传统Linear Graph建模方法,提出适合多学科统一建模的EELG(Extensible Elementary Linear Graph)理论,可以很好解决包括多体动力学分析在内的多学科系统集成仿真,最终求得DAEs形式的方程组,联立这些方程后求得多能量域系统动态性能的数值解。结合软件工程中模块化与面向对象技术,将Linear Graph封装成可扩展的单元线性图,使得组件模型具有多态性、可重用性和可扩展性。最后,基于EELG技术,运用面向对象的仿真语言Modelica构建不同学科的标准组件库,并在Dymola软件平台运行仿真,正确的输出结果表明该方法是可行的。 The design and development of multidisciplinary systems requires a unified way and simulating integration that can nearly adapts to every energy domain. An approach of generating behaviour equations for deferent fields, and entirely solving simulating integration ofmultidisciplinary systems is presented, including the multibody motion and dynamic analyse of mechanic. The final differential-algebraic equations (DAEs) will be solved with numerical methods that generate approximate solution. Based on the linear graph theory and combined with the module in the software engineering, EELG (Extensible Elementary Linear Graph) technique was proposed that could be applied to multidisciplinary systems, encapsulated linear graph into the elementary graph, and made the element module with the hierarchy, reusing and extensibility. Finally, with the EELG method, the Modelica of Object Oriented modeling language was adopted to develop the module library, and the Dymola software platform was implemented on. The approach is proved by the correct result.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第8期2275-2279,共5页 Journal of System Simulation
基金 上海科技委员会2005年基础研究重点项目(05JC14021)
关键词 多学科系统 仿真集成 LinearGraph 面向对象 Modelica/Dymola multidisciplinary systems simulating integration linear graph Object Oriented, ModelicakDymola
  • 相关文献

参考文献10

  • 1Andrew G C,Kesavan H K.The vector-network model:a new approach to vector dynamics[J].Mechanism and Machine Theory (S0094-114X).1975,10:57-75.
  • 2Li T W.Dynamics of rigid body systems:A vector-network approach[D].M.A.Sc.Thesis,University of Waterloo,Canada,1985.
  • 3Wittenburg J,Wolz U.MESA VERDE:a symbolic program for nonlinear articulated-rigid-body dynamics[C]//Presented at ASME Design Engineering Conference,Cincinnati,OH,1985.
  • 4McPhee J,Ishac MG,Andrews G C.Wittenburg's formulation of multibody dynamics equations from a graph-theoretic perspective[J].Mechanism and Machine Theory (S0094-114X).1996,31:202-13.
  • 5McPhee J.On the use of linear graph theory in multibody system dynamics[J].Nonlinear Dynam (S0924-090X).1996,9:73-90.
  • 6A Diaz-Calderon,C J J Paredis,P K Khosla.Automatic generation of system-level dynamic equations for mechatronic systems[J].Computer-Aided Design (S0010-4485).2000,32:339-354.
  • 7J McPhee.Automatic generation of motion equations for planar mechanical systems using the new set of "Branch Coordinates"[J].Mechanism and Machine Theory (S0094-114X).1998,33:805-823.
  • 8Shi P.Flexible multibody dynamics:a new approach using virtual work and graph theory[D].Systems Design Engineering,University of Waterloo,Waterloo,Canada,1998.
  • 9J McPhee,P Shi,J C Piedboeuf.Dynamics of multibody systems using virtual work and symbolic programming[J].Mathematical and Computer Modelling of Dynamical Systems (S1387-3954).2002,8:137-155.
  • 10Modelica Association.Modelica-A Unified Object-Oriented Language for Physical Systems Modeling[S].Language Specification Version 2.1,2004,1.

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部