期刊文献+

几何非线性分析的无网格伽辽金算法 被引量:2

Analysis for geometrical nonlinearity with Element-free Galerkin Method
下载PDF
导出
摘要 利用几何非线性的应变-位移关系,在小应变假设的条件下,推导出二维几何非线性问题中的无网格伽辽金法的计算格式。由于无网格方法中的形函数不具备Kronecker delta性质,文中采用罚方法来实现本质边界条件。数值实例表明,无网格伽辽金法在处理几何非线性问题时,具有较高的计算精度,是一种有效的数值计算方法。 Element-free Galerkin Method for the analysis of 2D geometrical nonlinearities is presented by means of geometrically nonlinear strain-displacement relation under small strain assumption. Due to the lack of Kronecker delta properties in meshless method,the penalty method is explored to enforce the essential boundary conditions. Results of numerical examples in geometrical nonlinearities have shown that element-free Galerkin method, with its high accuracy, is much more efficient to deal with these problems.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2006年第4期487-491,共5页 Chinese Journal of Computational Mechanics
关键词 无网格伽辽金法 罚方法 几何非线性 大变形 Element-free Galerkin Method penalty method geometrical nonlinearity~ large deformation
  • 相关文献

参考文献10

  • 1LUCY L B.A numerical approach to the testing of the fission hypothesis[J].The Astron Journal,1977,8(12):1013-1024.
  • 2NAYROLES B,TOUZOT G,VILLON P.Generaling the finite element method:diffuse approximation and the Diffuse element[J].Computation Mechanics,1992,10:307-318.
  • 3BELYTSCHKO T,LU Y Y,GU L.Element-free Galerkin method[J].Int J for Num Methods in Eng,1994,37:229-256.
  • 4LIU W K,JUN S.Multiple scale reproducing kernel particle method for large deformation problems[J].Int J for Num Methods in Eng,1998,41:1339-1362.
  • 5LIEWKM,NGTY,WUYC.Mesh free method for large deformation analysis-a reproducing kernel particle approach[J].Engineering Structures,2002,24:543-551.
  • 6张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报,2003,20(6):730-742. 被引量:109
  • 7宋康祖,陆明万,张雄.固体力学中的无网格方法[J].力学进展,2000,30(1):55-65. 被引量:66
  • 8周维垣,寇晓东.无单元法及其工程应用[J].力学学报,1998,30(2):193-202. 被引量:99
  • 9贾高顺,王晓光,梁利华,马修彦.无网格方法的应用前景[J].科技通报,2003,19(5):360-364. 被引量:7
  • 10ZHU T,ATLURI S N.A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method[J].Computational Mechanics,1998,21:211-222.

二级参考文献162

  • 1张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397. 被引量:84
  • 2贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用[J].计算物理,1997,14(2):155-166. 被引量:31
  • 3Lucky L B. A numberical approach to the testing of the fission hypothesis[J] .The Astron J, 1977,12(8) : 1013 - 1024.
  • 4Monaaghan J J. Why particle methods work[J] .SIAM J Sci Stat Comput, 1982,3(4) :422.
  • 5Monaaghan J J. An introduction to SPH [J]. Comput Phys Comm,1998, 48:89 - 96.
  • 6Monaaghan J J. Smooth Particle hydrodynamic[J]. Annu Rev Astron Astrophys,1992, 30:543- 574.
  • 7Swegte J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis [J] .J Comput Flay, 1995, 116:119 - 134.
  • 8Johnson R,Stryk R A, Beisael S R.SPH for high velocity impact computations[J] .Comput Methods Appl Mech Engrg, 1996, 139:347 -373.
  • 9Lancaster P, Salkauskas K. Surfaces generated by moving leastsquares methods[J]. Math Comput, 1981,37:141 - 148.
  • 10Nayroles B, Touzot G., Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements[ J ]. Comput Mech, 1992, 10:307-318.

共引文献251

同被引文献8

  • 1Liu W K, Jun S, Multiple-scale reproducing kernel particle methods for large deformation problems[J]. International Journal for Numerical Methods in Engineering, 1998,41 : 1339-1362.
  • 2Li S, Hao W, Liu W K, Numerical simulations of large deformation of thin shell structures using mesh- free methods [J ]. Computational Mechanics, 2000, 25 :102-116.
  • 3Chen J S, Pan C H, Wu C T, et al, Reproducing kernel particle methods for large deformation analysis of non-linear structures [J]. Computer Methods in Applied Mechanics and Engineering, 1996,139 : 195- 227.
  • 4Rajendran S, Zhang B R. A "FE-meshfree" QUAD4 element based on partition of unity[J]. Computer Methods in Applied Mechanics and Engineering, 2007,197:128-147.
  • 5Rajendran S, Liew K M. Completeness requirements of shape functions for higher order finite elements[J].Structural Engineering and Mechanics, 2000,10:93-110.
  • 6Rajendran S, Liew K M. A novel unsymmetric 8- node plane element immune to mesh distortion under a quadratic displacement field[J]. International Journal for Numerical Methods in Engineering, 2003, 58 : 1713-1748.
  • 7刘鸿文.高等材料力学[M].北京:高等教育出版社,1976.
  • 8熊渊博,崔洪雪,龙述尧.大变形问题分析的局部Petrov-Galerkin法[J].计算力学学报,2009,26(3):353-357. 被引量:4

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部