期刊文献+

基于过零检测的虹膜特征提取算法 被引量:12

Iris Feature Extracting Algorithm Based on Zero-Crossing Detection
下载PDF
导出
摘要 该文针对虹膜图像不理想、噪声影响较大情况下,虹膜识别率下降的问题,提出了一种基于过零检测的虹膜特征提取算法,利用过零检测算子与信号局部的相关性提取虹膜纹理特征,并根据所得的系数进行符号编码形成二值特征模板,最后采用相似度进行模式分类。仿真结果表明,该算法能够提取不理想虹膜图像的稳定特征,提高识别率。 In order to resolve the problem of recognition rate decrease in condition of unideal iris image and local noise, an iris feature extracting algorithm based on local zero-crossing detection is presented in this paper. This method extracts iris texture feature by using local relativity of zero-crossing operator and texture signal, then encodes iris texture to form iris feature template depend on coefficient sign, finally classifies different patterns using similarity. Simulation results show that stable feature of unideal iris image can be extracted and high recognition rate can be achieved using the algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第8期1452-1457,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60372085) 太原科技大学校青年科技研究基金(2004008) 陕西省科学技术研究发展计划(2003K06-G15)资助课题
关键词 图像识别 过零检测 编码 特征提取 相似度 Image recognition, Zero-crossing detection, Encoding, Feature extracting, Similarity
  • 相关文献

参考文献20

  • 1孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,29(z1):1744-1748. 被引量:143
  • 2Dangman J.High confidence visual recognition of person by a test of statistical independence.IEEE Trans.on Pattern Anal.Machine Intelligence,1993,15 (11):1148-1161.
  • 3Dangman J.The importance of being random:statistical principles of iris recognition.Pattern recognition,2003,36(2):279-291.
  • 4Daugman J.Statistical richness of visual phase information:update on recognizing persons by iris patterns.International Journal of Computer Vision,2001,45(1):25-38.
  • 5Porat M,Zeevi Y Y.Localized texture processing in vision:analysis and synthesis in the Gaborian space.IEEE Trans.on Biomedical Eng.,1989,36(1):115-129.
  • 6Masek L.Recognition of human iris patterns for biometric identification.http://www.csse.uwa.edu.au/~pk/studentprojects/lib or.
  • 7Wildes R P.Iris recognition:an emerging biometric technology.Proc.IEEE,1997,85(9):1348-1363.
  • 8Wildes R P,Asmuth J C,et al..A machine-vision system for iris recognition.Machine Vision and Applications,1996,9(1):1-8.
  • 9Wildes R P,Asmuth J C.A system for automated iris recognition.Proc of the Second IEEE Workshop on Application of Computer Vision,Sarasota,FL,USA,Dec.1994:121-128.
  • 10Lim Shinyoung,Lee Kwanyong,Byeon Okhwan,Kim Taiyun.Efficient iris recognition through improvement of feature vector and classifier.Journal of Electronics and Telecommunication Research Institute,2001,23(2):61-70.

二级参考文献64

  • 1[1]Glossary of biometrics terms [R].1998,Association for biometrics(AfB),Intemational Computer Security Association (ICSA).
  • 2[2]R Chellappa,et al.Humnan and machine recognition of face:a survey[J].Proc.IEEE,1995,83 (5):705-740.
  • 3[3]R Brunelli,T Poggio.Face recognition:features versus templates [J].IEEE Trans.PAMI,1993,15(10):1042-1052.
  • 4[4]D L Swets,J Weng.Using discriminant eigenfeatures for image retrieval[J].IEEE Trans.PAMI,1996,18 (8):831-836.
  • 5[5]B Moghaddam,et al.Probabilistic visual recognition for object recognition [J].IEEE Trans.PAMI,1997,19(7) :696-710.
  • 6[6]S Y Lee,et al.Recognition of humman front faces using knowledgebased feature extraction and neunofuzzy algorithm [J].Pattern Recognition,1996,29(11):1863-1876.
  • 7[7]S Lawtonce,et al.Face recognition:a convolutional neural-network approach [J].IEEE Trans.NN,1997,8(1):98-113.
  • 8[9]J Zhang,et al.Face recognition:eigenface,elastic matching,and neural nets [J].Proc.IEEE,1997,85(9):1422-1435.
  • 9[10]L Wiskott,et al.Face recognition by elastic bunch graph matching [J].IEEE Trans.PAMI.1997,19(6) :775-779.
  • 10[11]N Ratha,et al.A real-time matching system for large fingerprint database [J].IEEE Trans.PAMI,1996,18(8) :799-813.

共引文献397

同被引文献169

引证文献12

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部