期刊文献+

铜镉胁迫对2种菌根真菌生长和细胞壁离子交换量的影响 被引量:9

Influence of Copper,Cadmium on Growth and Cation Exchange Capacity of Two Kinds of Ectomycorrhizal Funguses
下载PDF
导出
摘要 在离体培养条件下,研究了铜镉胁迫对2种外生菌根真菌美味牛肝菌(Boletus edulis)和铆钉菇(Gomphidius viscidus)生长状况,培养环境pH值和细胞壁离子交换量的影响.结果表明,以对照相比,铜镉处理抑制了菌根真菌的生物量积累.通过半致死浓度评价2种菌根真菌耐受性发现,铆钉菇的Cu耐受性强于美味牛肝菌,而Cd耐受性弱于美味牛肝菌.菌根真菌培养后,基质pH降低与真菌生物量有关.铜镉处理下菌根真菌单位生物量下降的pH单位大于对照,说明菌根真菌在重金属胁迫下能通过调节自身pH环境缓解压力.铆钉菇的离子交换量在780~1800μmol·g^-1之间,并随重金属处理浓度的增加而增加;美味牛肝菌的离子交换量在500~750μmol·g^-1之间,并随重金属处理浓度的增加而减少. Ectomycorrhizal fungus has the ability to enhance the growth of higher plants in the contaminated area,especially ruined by heavy metals. And much attention was focused on how the fungus could enhance the resistance of higher plants. We focused on the resistance of ectomycorrhizal fungus in vitro to heavy metals. In the first experiment, the mycelium biomasses of two ectomycorhizal funguses growing in the Kottke media treated with different concentrations of Cu and Cd were measured after growth as well as the pH value of the medium. The results indicated that heavy metals could reduce the biomasses of the two funguses. Gomplhidius viscidus has higher tolerance to Cu but less Cd than that of Boletus edulis. With development of fungal mycila, the pH value of medium dropped significantly,and this effect might play an important role in enhancing its tolerance. In addition,the higher pH value change per biomass indicated that the fungus treated with heavy metals had the ability to adjust environment of pH more significantly. In the second experiment, the cation exchange capacity (CEC) of the cell walls of the fungus treated with heavy metals was measured according to Marschner's. The results indicated that with the increasing of the concentrations of Cu or Cd, the CEC of Gomphidius viscidus increased, but the CEC of Boletus edulis dropped.
出处 《环境科学》 EI CAS CSCD 北大核心 2006年第8期1654-1658,共5页 Environmental Science
基金 国家自然科学基金项目(20477001) 广东省自然科学基金项目(035018)
关键词 外生菌根真菌 PH 离子交换量 ectomycorrhizal fungus copper cadmium pH cation exchange capacity
  • 相关文献

参考文献19

  • 1Jentschke G,Godbold D L.Metal toxicity and ectomycorrhizas[J].Physiol.Plantarum,2000,109:107~116.
  • 2Krupa P,Piotrowsha-Seget Z.Positive aspects of interaction between plants and mycorrhizal fungi originating from soils polluted with cadmium[J].Polish J.of Environ.Studies,2003,12(6):723~726.
  • 3黄艺,urban.pku.edu.cn,陶澍,urban.pku.edu.cn,陈有鑑,urban.pku.edu.cn,张学青,urban.pku.edu.cn.外生菌根对欧洲赤松苗(Pinussylvestris)Cu、Zn积累和分配的影响[J].环境科学,2000,21(2):1-6. 被引量:28
  • 4Tichelen K K V,Colpaert J V,Vangronsveld J.Ectomycorrhizal protection of Pinus sylvestris against copper toxicity[J].New Phytol.,2001,150:203~ 213.
  • 5Brunner I,Frey B.Detection and localization of aluminum and heavy metals in ectomycorrhizal Norway spruce seedlings[J].Environ.Pollution,2000,108:121~128.
  • 6Denny H,Ridge I.Fungal slime and its role in the mycorrhizal amelioration of zinc toxicity to higher plants[J].New Phytol.,1995,130:251~257
  • 7Ajungla T,Sharma G D,Dkhar M S.Heavy metal toxicity on dehydrogenase activity on rhizospheric soil of ectomycorrhizal pine seedlings in field condition[J].J.Environ.Biol.,2003,24(4):461~463.
  • 8Jacob C,Courbot M,Martin F,et al.Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus[J].FEBS Letters,2004,576:423 ~ 427.
  • 9Blaudez D,Botton B,Chalot M.Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus[J].Microbiology-UK,2000,146:1109 ~1117.
  • 10Galli U,Schuepp H,Brunold C.Heavy metal binding by mycorrhizal fungi[J].Physiol.Plant,1994,92:364~368.

二级参考文献16

  • 1[1]Shetty P K, Hetrick B A D, Figge D A H, et al. Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil[J]. Envir Poilu, 1995,86:181-188
  • 2[2]Leyval C, Turnau K, Haselwandter K. Effects of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects[J]. Mycorrhiza, 1997,7:139-153
  • 3[3]Khan A G, Kuek C, Chaudhry T M, et al. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation[J]. Chemosphere,2000,41:197-207
  • 4[4]Blaudez D, Jacob C, Turnau K, et al. Differential responses of ectomycorrhizal fungi to heavy metals in vitro[J]. Mycol Res,2000, 104:1366-1371
  • 5[5]Jones M D, Hutchinson T C. The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper[J]. New Phytol, 1986,102:429-442
  • 6[6]Colpaert J V, Van Assche J A. The effects of cadmium and cadmium-zinc interaction on the axenic growth of ectomycorrhizal fungi[J]. Plant Soil, 1992,145:237-243
  • 7[7]Duxbury T. Ecological aspects of heavy metal responses in microorganisms[J]. Advan in Microb Eco, 1985,8:185-235
  • 8[8]Hartley J, Cairney J W G, Meharg A A. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metal in the environment? [J]. Plant Soil, 1997,189:303-319
  • 9[9]Meisch H U, Scholl A R, Schmitt J A. Cadmium ein Wachstumsfaktor fur den schiefknolligen Anischampigno[ M]. Agaricus abruptibulbus (Peck) Kauffmann. Zeitschrift Naturforsch 36c. 1981.172-181
  • 10[10]Marschner P, Jentschke G, Godbold D L. Cation exchange capacity and lead sorption in ectomycorrhizai fungi[J]. Plant Soil, 1998,205: 93-98

共引文献42

同被引文献141

引证文献9

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部