期刊文献+

对称不定矩阵的广义Cholesky分解法 被引量:9

THE GENERALIZED CHOLSKY FACTORIZATION METHOD FOR SOLVING SYMMETRIC INDEFINITE LINEAR SYSTEMS
原文传递
导出
摘要 对称不定矩阵的广义Cholesky分解法赵金熙(南京大学)THEGENERALIZEDCHOLSKYFACTORIZATIONMETHODFORSOLVINGSYMMETRICINDEFINITELINEARSYSTEMS¥ZhaoJin-xi(Na... Abstract We develop and analyze the generalized Cholesky factorisation method for solving symmetric indefinite lineax systems arising from discretization of the Stokes equations and in the context of minimization of quadratic forms subject to linear constraints. The new method presented here has the advantages of being both the.computational cost and storage space. Operation counts of this method are same as the Cholesky factorization method for solving symmetric positive definite systems.The numerical example shows the effectiveness fo the generalized Cholesky factorization method.
作者 赵金熙
机构地区 南京大学
出处 《计算数学》 CSCD 北大核心 1996年第4期442-448,共7页 Mathematica Numerica Sinica
基金 国家863计划 江苏省自然科学基金
  • 相关文献

参考文献3

  • 1袁亚湘,Numerical Methods for Nonlinear Programming,1993年
  • 2赵金熙,博士学位论文,1987年
  • 3蒋尔雄,对称矩阵计算,1984年

同被引文献29

  • 1莫扬.股票市场波动性的国际比较研究[J].数量经济技术经济研究,2004,21(10):49-56. 被引量:24
  • 2于绍慧,郑小宏.分枝定界算法中的新区间剖分原则(英文)[J].经济数学,2006,23(3):311-314. 被引量:1
  • 3张玉岩,钱伟懿.凸约束不定二次规划问题的分枝定界方法[J].渤海大学学报(自然科学版),2007,28(2):166-168. 被引量:1
  • 4Rohde C A. Generalized inverses of partitioned matrices[J]. SIAM J Appl Math, 1965, 13 :1033-1035.
  • 5Pringle R M, Rayner A A. Expressions for generalized inverses of a bordered matrix with application to the theory of constrained linear models[J]. SIAM Review, 1970,12: 107-115.
  • 6秦兆华.关于次反对称矩阵与反次对称矩阵.西南师范学院学报(自然科学版),1985,(1):100-110.
  • 7Jing Y. L. , Chen R. M.M. , Wing O.. Improving convergence performance of relaxation- based transient analysis by matrix splitting in circuit simulation [J]. IEEE Transactions on Circuits and Systems, Part 1, 2001,48(6):769-780.
  • 8Zhao J X.The generalized Cholesky factorization method for saddle point problems.Applied Mathematics and Computation,1998,92:49-58.
  • 9Wang W G and Zhao J X.Perturbation analysis for the generalized Cholesky factorization. Applied Mathematics and Computation,2004,147:601-606.
  • 10Chang X W.Christopher C.Paige and G.W.Swtewart,New perturbation analysis for the Cholesky factorization.IMA Journal of Numerical Analysis,1995,14:1-28.

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部