期刊文献+

提高话者识别鲁棒性的信道空间映射方法 被引量:1

Robust speaker recognition: using channel space mapping
原文传递
导出
摘要 该文指出了常用的倒谱均值归一方法在去除信道因素的同时,也去掉了一些说话人的语音特征,因此,在信道失配的环境下鲁棒性较差。提出利用信道间差异,补偿信道失配的信道空间映射方法,并构建了一个与文本无关对随机信道鲁棒的说话人识别系统。实验结果表明:对来自随机信道的说话人语音,第1名和前30名的正确识别率,与实验室基线系统的性能比较,分别提高了5.4%和18.6%。寻找并补偿信道间的差异,是一种提高说话人识别鲁棒性的有效方法。 The cepstrual means normalization for removing the channel effects from audio material has also removed some speech features of speaker that make speaker recognition systems less robust in complex channels conditions. This paper presents a text-independent speaker recognition using channel space mapping method that is more robust. The test results show that the correct recognition rate of the first speaker is 5.4%, and for the top 30 speakers is 18.6% better than the base line system. Therefore , the method provides an effective way to improve the robustness of speaker recognition systems by compensating for differences between channels.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第7期1329-1332,共4页 Journal of Tsinghua University(Science and Technology)
关键词 信息处理 说话人识别 鲁棒 信道失配 信道空间映射 information processing speaker recognition robust channel variability channel space mapping
  • 相关文献

参考文献6

  • 1Heck L P,Weintraub M.Handset-dependent background models for robust text-independent speaker recognition[J].ICASSP,1997,2:1071-1074.
  • 2Quatieri T F,Reynolds D A,O'Leary G C.Estimation of handset nonlinearity with application to speaker recognition[J].IEEE Transaction On Speech And Audio Processing,2000,8(5):567-584.
  • 3赵蕤,王作英.用于语音识别的基于频谱调整的信道自适应方法[J].清华大学学报(自然科学版),2005,45(4):441-444. 被引量:2
  • 4Westphal M.The use of cepstral means in conversational speech recognition[C]∥ Proceedings of Eurospeech 97,Berlin:[s.n.],1997:1143-1146.
  • 5Reynolds D A.Channel robust speaker verification via feature mapping[J].ICASSP,2003,2:53-56.
  • 6Reynolds D A,Quatieri T F,Dunn R B.Speaker verification using adapted Gaussion mixture models[J].Digital Signal Processing,2000,10:19-41.

二级参考文献6

  • 1王作英.基于段长分布的HMM语音识别模型[A]..第二届全国汉字?汉语识别会议[C].庐山,1989..
  • 2Zhao Y. An Acoustic-phonetic-based speaker adaptation technique for improving speaker-independent continuous speech recognition [J].IEEE Trans Speech Audio Processing, 1994, (2): 380-394.
  • 3Rahim M G, Juang B J. Signal bias removal by maximum likelihood estimation for robust telephone speech recognition[J]. IEEE Trans Speech Audio Processing, 1998, (4): 19-30.
  • 4Kim D Y, Un C K, Kim N S. Speech recognition in noisy environments using first-order vector Taylor series [J].Speech Communication, 1998, (24): 39-49.
  • 5Zhao Y. Frequency-domain maximum likelihood estimation for automatic speech recognition in additive and convolutive noises [J]. IEEE Trans Speech Audio Processing, 2000,(8): 255 - 266.
  • 6Leggetter N S, Woodland P C. MLLR for speaker adaptation of continuous density hidden Markov modes [J]. Computer Speech and Language, 1995, (9): 171 - 186.

共引文献1

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部