摘要
为适应不确定推理之需要,Mukaidono提出并系统地研究了正则三值逻辑函数的理论.这类函数个数的计算十分复杂,至今仅对自变量个数小于7的情形提出了若干结果.本文将反链方法与该类计算联系起来,从而为解决该类问题提供了一种新的可能途径.定义1 设E={0,1/2,1},在E上除通常序“≤”外,再定义偏序(?)为:0(?)1/2,1(?)1/2,i(?)i.这两种序在E^n上各诱导出相应的乘积序,仍记为“≤”或“(?)”.映射f:E^n→E称正则函数,若(?)a,b∈E^n,当a(?)b时f(a)(?)f(b).正则函数f:E^n→E称单调函数,(?)a,b∈E^n,当a≤b时f(a)≤f(b).以下用F(n,R)记全体n元正则函数之集,用F(n,M)记全体n元单调函数之集.定义2 设(P,≤)是非空偏序集,a,b∈P.若有c∈P使c≤a且c≤b,则称a与b有公根.设A与B是P中的反链,若(?)a∈A和(?)b∈B,a与b有(无)公根,则称序对(A,B)为全(无)公根反链对.以下用E(n)表示(E^n,(?))中全体无公根反链对之集.令N(n)={1,…,n}.W(n)={L:L(?)N(n),L≠φ},用N(n,C)表示(W(n),(?))中全体全公根反链之集.定义3 设a=(a_1,…,a_n)∈(E^n.(?)).
出处
《科学通报》
EI
CAS
CSCD
北大核心
1996年第21期2008-2008,共1页
Chinese Science Bulletin