摘要
<正>设G是阶为v的图且具有完美对集。设n是正整数,满足n≤(v-2)/2.G称为n-可扩的,是说:G中任意n条独立边包含在G的一个完美对集中。 设G是一个图且v∈V(G)。定义N_k(v)={u|u∈V(G)且d(u,v)=k}。设u,v∈V(G)满足d(u,v)=2.记I(u,v)=|N(u)∩N(v)|。定义散度α~*(u,v)如下: n_(u+v)(W)=max{|S||w∈N(u)∩N(v),S是G[{w}∪N_G(w)]中包含u和v的独立集},
出处
《科学通报》
EI
CAS
CSCD
北大核心
1996年第20期1899-1901,共3页
Chinese Science Bulletin