期刊文献+

随机边界条件下向列相液晶微滴的蒙特卡罗模拟

Monte Carlo Simulations of Nematic Droplets Under Random Boundary Conditions
下载PDF
导出
摘要 通过蒙特卡罗方法研究聚合物分散液晶(PDLC)微滴。取沿向列相液晶微滴(简称液滴)表面切向随机取向边界条件,计算了不同温度下二阶序参量〈P2〉λ和沿表面切向的内禀强度Q在液滴内不同区域的数值,发现在低温时,Q值从液滴外层到内层有逐渐减小的趋势,外层接近于1.0。同时对三维空间随机取向边界条件进行计算,进而对两种边界条件的结果做出对比和分析。发现后者的内禀强度值不存在随温度和区域的较强变化,均在0.5左右,较前者弱很多。 Monte Carlo computer simulations of nematic droplets on 2DR boundary conditions were used to mimic polymer dispersed liquid crystal(PDLC) . On 2DR boundary conditions, the random orienta- tions of the molecules at the boundary are tangential to the surface of the droplets. The second order parameters (P2), and the values of introrse intensity Q in different shells of the droplets on 2DR boundary conditions at different reduced temperatures were calculated. It was found that the introrse intensity Q from the outer shells of the droplets to the inner shells at lower temperatures was declining. The values of Q in outer shells were close to 1. It was also assumed that the orientations of the molecules at the boundary are random in 3-dimension space(3DR boundary conditions). The properties of the droplets at 3DR boundary conditions were also investigated. It was found that the introrse intensity for all the temperatures and shells in the case of 3DR boundary conditions are near 0. 5 and much weaker than that in the case of 2DR boundary conditions.
出处 《液晶与显示》 CAS CSCD 北大核心 2006年第4期314-319,共6页 Chinese Journal of Liquid Crystals and Displays
基金 河北省高校重点学科建设资助项目
关键词 聚合物分散液晶 向列相液滴 蒙特卡罗方法 随机边界条件 内禀强度 polymer dispersed liquid crystal nematic droplet Monte Carlo method random boundary condition introrse intensity
  • 相关文献

参考文献12

  • 1宋静,马骥,刘永刚,宣丽.新型聚合物网络稳定液晶光栅的制备[J].液晶与显示,2005,20(2):119-122. 被引量:15
  • 2杨文君,黄子强,夏都灵.液晶中聚合物网络的形貌研究[J].液晶与显示,2003,18(2):97-100. 被引量:10
  • 3Chiccoli C,Pasini P,Semeria F,et al.A computer simulation of nematic droplets with radial boundary conditions[J].Phys.Lett.A,1990,150(5,6,7):311-314.
  • 4Chiccoli C,Pasini P,Semeria F,et al.Computer simulations of nematic droplets with toroidal boundary conditions[J].Mol.Cryst.Liq.Cryst.,1992,221(1):19-28.
  • 5Berggren E,Zannoni C,Chiccoli C,et al.Computer simulations of nematic droplets with bipolar boundary conditions[J].Phys.Rev.E,1994,50(4):2929-2939.
  • 6Ruhwandl R W,Terentjev E M.Monte Carlo simulation of topological defects in the nematic liquid crystal matrix around a spherical colloid particle[J].Phys.Rev.E,1997,56(5):5561-5565.
  • 7Lebwohl P A,Lasher G.Nematic-liquid-crystal order-a Monte Carlo calculation[J].Phys.Rev.A,1972,A6(1):426-429.
  • 8Chiccoli C,Pasini P,ZannoniC.A Monte Carlo investigation of the planar Lebwohl-Lasher lattice model[J].Phys.A,1988,148A:298-311.
  • 9Landau D P,Binder K.A Guide to Monte carlo Simulations in Statistical Physics[M].Cambridge:Cambridge University Press,2000:68-73.
  • 10Fabbri U,Zannoni C.A Monte Carlo investigation of the Lebwohl-Lasher lattice model in the vicinity of its orientational phase transition[J].Mol.Phys.,1986,58(4):763-788.

二级参考文献21

  • 1马骥,刘永刚,于涛,鲁兴海,穆全全,宣丽.全息法制备二维电调谐聚合物/液晶光栅[J].液晶与显示,2005,20(2):115-118. 被引量:15
  • 2Nicoletta F P, De Filpo G, Lanzo J, et al. A method to produce reverse-mode polymer-dispersed liquid-crystal shutters[J]. Appl. Phy. Lett.,1999, 74(26): 3945-3947.
  • 3Bos P J, Rahamn J A, Doane J W. A low -threshold-voltage polymer network TN device[A]. Society for Information Display International Symposium Digest of Technical Papers[C].1993.XXIV: 877-880.
  • 4Nose T , Masuda S, Sato S. Effects of low polymer content in a liquid-crystal microlens[J]. Opt.Lett., 1977, 22(6):351-353.
  • 5Yang D K, Chien L C, Doane J W. Cholesteric liquid crystal /polymer dispersion for haze-free light shutters[J]. Appl. Phys. Lett.,1992,60(25): 3102-3194.
  • 6Ren Hongwen, Fan Yun-Hsing, Wu Shin-Tson. Polymer network liquid crystals for tunable microlens arrays[J]. J. Phy. D:Appl. Phys. Lett., 2004,37:400-403.
  • 7Ren Hongwen, Wu Shin-Tson. Tunable microlens using a gradient polymer network liquid crystal[J].Appl. Phys. Lett., 2002,82(1):22-24.
  • 8Sheng P. Boundary-layer phase transition in nematic liquid crystals[J]. Phys. Rev., 1982, A26(3):1610-1617.
  • 9Lebwohl P A, Lasher G. Nematic-liquid-crystal order-a Monte Carlo calculation[J]. Phys. Rev.A, 1972, A6(1):426-429.
  • 10宾德 赫尔曼 著 秦克诚 译.统计物理学中的蒙特卡罗模拟方法[M].北京:北京大学出版社,1993.119-137.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部