摘要
设X是具有Frchet可微范数的一致凸Banach空间,C是X的有界闭凸子集,S={T(t):t≥0}是C上渐近非扩张牛群.若u(·):[0,+∞)→C是S的几乎轨道且关于t∈[0,+∞)一致连续,则{u(t)}几乎弱收敛到集合 {u(r):r≥t}∩F(s)的唯一点。
Let X be a uniformly convex Banach space with a Fr chet differentiable norm, C be a bounded closed convex subset of X, and S = {T(t): t≥0} be an aspoptoticajly nonexpansive semigroup on C. If u(·): [0, ∞) → C is an almost-orbit of S which is uniformly continuous in t ∈[0, ∞) then {u(t): t≥0} almost converges weakly to the unique point of the set,.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1996年第6期796-802,共7页
Acta Mathematica Sinica:Chinese Series
关键词
几乎轨道
非扩张半群
遍历定理
巴拿赫空间
Almost-orbit, Asymptotically nonexpansive semigroup, Ergodic theorem, Fixedpoint