期刊文献+

基于模糊聚类的网络故障预报

Network Fault Predicting Based on Fuzzy Clustering
下载PDF
导出
摘要 文章针对网管告警数据库中时间序列存在的连续性、不确定性和模糊性问题,提出了一种基于模糊聚类的时间序列规则挖掘新方法。该方法引入模糊聚类理论,可预测出一些告警(联合)事件的发生将导致哪些告警(联合)事件的随后产生。通过对某校园网的告警数据库进行规则挖掘实验,表明该方法可以准确、有效地挖掘出隐含在海量网管告警数据库中大量有意义的时序规则,规则中的概率参数(置信度和支持度)可作为网络管理的先验知识用来指导网络故障的诊断和预报。 For the problems of continuity,uncertainty and fuzziness in the time-series of the network management alarm database,this paper puts forward a new mining time-series method based on fuzzy clustering.The method applies the fuzzy clustering theory to predict which alarms cause other alarms.The experiment based on a campus network alarm database shows that many significant time-series rules could be acquired accurately and efficiently from a large amount of network management alarm database,and the probability parameter,confidence and support in this paper,in those rules could be used to guide the fault diagnosis and forecasting of the intelligent network.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第23期115-116,137,共3页 Computer Engineering and Applications
关键词 网络管理 数据挖掘 故障预报 模糊聚类 告警数据库 时序规则 network management,data mining,fault prediction,fuzzy clustering,alarm database,time-series rules
  • 相关文献

参考文献6

二级参考文献17

  • 1Pawlak Z. Rough set[J]. Int. J. of Computer and Information Science,1982 (11): 341-356.
  • 2Tsumoto Shusaku. Extraction of experts' decision rules from clinical databases using rough set model[J]. Intelligent Data Analysis, 1998,2(1-4): 215-227.
  • 3Hong T P, Wang T T, Wang S L, et al. Learning a coverage set of maximally general fuzzy rules by rough sets[J]. Expert Systems with Applications 2000, 19(2): 97-103.
  • 4Chan Chienchung. A rough set approach to attrobute generalization in data mining [A].Infomation Sciences[C]. 1998,107(1-4): 169-176.
  • 5Nguyen Hoang Phuong, Le Linh Phong, Santiprabhob P,et al. Approach to generating rules for expert systems using rough set theory[A]. IFSA World Congress and 20th NAFIPS International Conference[C]. 2001: 877-882.
  • 6Shen Qiang, Chouchoulas Alexios. A rough-fuzzy approach for generating classification rules[J]. Pattern Recognition, 2002,(35)11:2425-2438.
  • 7Ananthanarayana V S, Narasimha Murty M, Subramanian D K. Tree structure for efficient data mining using rough sets[J]. Pattern Recognition Letters 2003,24(6): 851-862.
  • 8Fayyad U M. On the induction of decision trees for multiple concept learning [D].EECS Department, University of Michigan,1991.
  • 9Fayyad U M, Irani K B. Multi-interval discretization of continuousvalued attributes for classification learning[A]. Proc. 13th IJCAI[C]. 112-119.
  • 10Slowinski R. Rough classification of HSV patients[A]. Intelligent decision support[C]. Kluwer: Roman Slowiuski, 1992,77-94

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部