期刊文献+

基于GEP和神经网络的属性约简分类算法 被引量:4

Attribution Reduction Classification Algorithms Based on GEP and Neural Network
下载PDF
导出
摘要 分类(Classification)是数据挖掘(DataMining)中的一个重要研究方向,目前传统的方法有神经网络,Fisher判别法等。神经网络缺乏对分类结果的直观解释;Fisher判别对于大数据集分类准确率大大下降,且不具有属性约简能力。为此,该文做了如下工作(1)提出了自动获取最佳阈值的思想;(2)对于错分的实例,提出了运用神经网络分类器二次分类的思想;(3)提出了基于基因表达式编程和神经网络的属性约简分类算法(AttributionReductionClassificationAlgo-rithmsBasedonGEPandNeuralNetwork,ARCA-GEPNN);(4)实验表明,ARCA-GEPNN的分类精度比Fisher判别提高了约25%,比GEP提高了约21%。 Classification is an important research direction of Data Mining.The traditional classification methods,such as Neural Network,Fisher Decision etc,have some shortages as follows.The Neural Network method cannot explain the classification results expressly.The Fisher Decision method cannot deal with the large data sets accurately,and cannot reduce the attributions effectively.To solve the problems,this paper makes the following contributions: (1)Proposing a new concept of automatic obtaining the best threshold; (2)Proposing an idea of classification based on BP Neural Network to deal with the data classified by Gene Expression Pregramming(GEP) method incorrectly; (3)Proposing Attribution Reduction Classification Algorithms Based on GEP and Neural Network; (4)By extensive experiments over ARCA-GEPNN and other traditional methods,the results show that classification precision of ARCA-GEPNN is improved by about 25% than Fisher Decision method,while about 21% by contrast to GEP.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第23期154-157,172,共5页 Computer Engineering and Applications
基金 国家973重点基础研究发展规划资助项目(编号:2002CB111504) 广西省自然科学基金资助项目(编号:0339039)
关键词 分类 基因表达式编程 神经网络 属性约简 classification,GEP,Neural Network,attribution reduction
  • 相关文献

参考文献14

二级参考文献24

  • 1李祚泳,刘少侬,邓新民,张辉军.基于主分量法的雷达回波资料的雹云识别及其效果检验[J].高原气象,1993,12(1):84-89. 被引量:7
  • 2Miiler V. A Font-Classifier for Printed Chese Characters Based on Possibility Theory. Berlin: Springer. 1993.
  • 3Zimmermann H J. Fuzzy Set Theory and Its Applications.Boston: Kluver. 1991.
  • 4Candida Ferreira. Gene expression programming: A new adaptive algorithm for solving problems. Complex Systems, 2001, 13(2):87~ 129
  • 5C Ferreira. Gene Expression Programming in Problem Solving [OL]. http://www. gene-expression-programming. com/gep/webpapers/Ferreira-WSC2001/Introduction. htm, 2001
  • 6C Ferreira. Mutation, Transposition, and recombination: An analysis of the evolutionary dynamics. The 6th Joint Conf on Information Sciences, the 4th Int'l Workshop on Frontiers in Evolutionary Algorithms, Research Triangle Park, North Carolina, USA, 2002
  • 7C Ferreira. Discovery of the boolean functions to the best densityclassification rules using gene expression programming. In: Proc of the 4th European Conf on Genetic Programming(EuroGP 2002),LNCS 2278. Berlin: Springer-Verlag, 2002. 51~60
  • 8Zuo Jie, Tang Changjie, Zhang Tianqing. Mining predicate association rule by gene expression programming. In: Proc of the 3rd Int' 1 Conf for Web Information Age 2002 (WAIM02), LNCS 2419. Berlin: Springer-Verlag, 2002. 92~103
  • 9Zuo Jie, Tang Changjie, Li Chuan, et al. Time series prediction based on gene expression programming. In: Proc of the 5th Int'l Conf for Web Information Age 2004 (WAIM04), LNCS 3129.Berlin: Springer-Verlag, 2004. 55~64
  • 10Jiawei Han, Micheline Kambr. Data Mining-Concepts and Techniques. Beijing: Higher Education Press, 2001. 110 ~ 112

共引文献76

同被引文献31

  • 1元昌安,唐常杰,左劼,谢方军,陈安龙,胡建军.基于基因表达式编程的函数挖掘——收敛性分析与残差制导进化算法[J].四川大学学报(工程科学版),2004,36(6):100-105. 被引量:44
  • 2谢方军,唐常杰,元昌安,左劼,陈安龙.基于基因表达式的演化硬件进化和优化算法[J].计算机辅助设计与图形学学报,2005,17(7):1415-1420. 被引量:11
  • 3彭京,唐常杰,李川,胡建军.M-GEP:基于多层染色体基因表达式编程的遗传进化算法[J].计算机学报,2005,28(9):1459-1466. 被引量:32
  • 4蒋思伟,蔡之华,曾丹,李曲,程远方.基于模拟退火的并行基因表达式编程算法研究[J].电子学报,2005,33(11):2017-2021. 被引量:15
  • 5Ferreira C.Gene expression programming:A new adaptive algorithm for solving problems[J].Complex Systems, 2001,13 ( 2 ) : 87-129.
  • 6Ferreira C.Function finding and the creation of numerical constants in gene expression programming[EB/OL]. ( 2002 ).http ://www.geneexpression-programming.com/webpapers/Ferreira-WSC7.pdf.
  • 7Ferreira C.Mutation,transposition,and recgmbination:An analysis of the evolutionary dynamics[EB/OL].(2002).http://www.gene-expression-programming.com/webpapers/ferreira-fea02.pdf.
  • 8Zuo Jie,Tang Chang-jie,Li Chuan,et al.Time series predication based on gene expression programming[C]//LNCS 3129(Lecture Notes in Computer Science) : WAIM04, International Conference for Web Information Age 2004.Berlin Heidelberg:Springer Verlag, 2004,3129 : 55-64.
  • 9Xu Kai-kuo,Liu Yin-tian,Tang Rong,et al.A novel method for real parameter optimization based on gene expression programming[J]. Applied Soft Computing Journal,2008(9).
  • 10Yuan Chang-an,Tang Chang-jie.Intelligent function model discovery system based upon gene expression programming [J].Journal of Computational Information Systems, 2006,2 (4) : 1299-1307.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部