期刊文献+

Global Existence and Nonexistence for a Strongly Coupled Parabolic System with Nonlinear Boundary Conditions 被引量:1

Global Existence and Nonexistence for a Strongly Coupled Parabolic System with Nonlinear Boundary Conditions
原文传递
导出
摘要 This paper deals with the strongly coupled parabolic system ut = v^m△u, vt = u^n△v, (x, t) ∈Ω × (0,T) subject to nonlinear boundary conditions 偏du/偏dη = u^αv^p, 偏du/偏dη= u^qv^β, (x, t) ∈ 偏dΩ × (0, T), where Ω 包含 RN is a bounded domain, m, n are positive constants and α,β, p, q are nonnegative constants. Global existence and nonexistence of the positive solution of the above problem are studied and a new criterion is established. It is proved that the positive solution of the above problem exists globally if and only if α 〈 1,β 〈 1 and (m +p)(n + q) ≤ (1 - α)(1 -β). This paper deals with the strongly coupled parabolic system ut = v^m△u, vt = u^n△v, (x, t) ∈Ω × (0,T) subject to nonlinear boundary conditions 偏du/偏dη = u^αv^p, 偏du/偏dη= u^qv^β, (x, t) ∈ 偏dΩ × (0, T), where Ω 包含 RN is a bounded domain, m, n are positive constants and α,β, p, q are nonnegative constants. Global existence and nonexistence of the positive solution of the above problem are studied and a new criterion is established. It is proved that the positive solution of the above problem exists globally if and only if α 〈 1,β 〈 1 and (m +p)(n + q) ≤ (1 - α)(1 -β).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第5期1297-1304,共8页 数学学报(英文版)
基金 Research supported by the Subsidized Scheme of Postdoctoral Research of Jiangsu Province and the Natural Science Foundation of Yancheng Normal Institute supported by the Research Scheme of the Natural Science of the Universities of Jiangsu Province(05KJB110144 and 05 KJB110063).
关键词 Strongly coupled Global existence Finite time blow-up Upper and lower solutions Strongly coupled, Global existence, Finite time blow-up, Upper and lower solutions
  • 相关文献

参考文献25

  • 1Cantrell, R. S., Cosner, C.: Diffusive logistic equation with indefinite weights: population models in disrupted environments II. SIAM J. Math. Anal., 22, 1043-1064(1991)
  • 2Okubo, A.: Diffusion and Ecological Problems, Mathematical Model, Biomathematics, 10, Springer, Berlin,1980
  • 3Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor. Biol., 79,83-99 (1979)
  • 4Duan, Z. W., Zhou, L.: Global and blow-up solutions for nonlinear degenerate parabolic systems with crosswise-diffusion. J. Math. Anal. Appl., 244, 263-278 (2000)
  • 5Li, Y. X., Deng, W. B., Xie, C. H.: Global existence and nonexistence for degenerate parabolic systems.Proc. Amer. Math. Soc., 130, 3661-3670 (2002)
  • 6Allen, L. J. S.: Persistence and extinction in single-species reaction-diffusion models. Bull. Math. Biol.,45(2), 209-227 (1983)
  • 7Alikakos, N. D., Rostamian, R.: Large time behavior of solutions of Neuman boundary value problem for the porous medium equation. Indiana Univ. Math. J., 30, 749-785 (1981)
  • 8Alikakos, N. D., Rostamian, R.: Stabilization of solution of the equation эu/эt= A△φ(u) -β(u). Non. Anal.TMA, 6, 637-647 (1982)
  • 9Aronson, D. G.: The porous medium equation, Lecture Notes in Mth., 1224, Nonlinear diffusion problem,1-46, Springer, Berlin, Etc., 1986
  • 10Bebernes, J., Galaktionov, V. A.: On classification of blow-up paterns for a quasilinear heat equation. Diff.Int. Equations, 9, 655-670 (1996)

同被引文献12

  • 1WANG Shu. Doubly Nonlinear Degenerate Parabolic Systems with Coupled Nonlinear Boundary Conditions [J]. Journal of Differential Equations, 2002, 182 (2) : 431-469.
  • 2Friedman A. Partial Differential Equations of Parabolic Type [ M ]. Englewood Cliffs: Prentice Hall Inc, 1964.
  • 3Lair A V, Oxley M E. A Necessary Sufficient Condition for Global Existence for a Degenerate Parabolic Boundary Value Problem [ J]. J Math Anal Appl, 1998, 221(1) : 338-348.
  • 4JIANG Zhao-xin. Doubly Degenerate Parabolic Equation with Nonlinear Inner and Boundary Sources [ J ]. Northeast Math J, 2007, 23(5) : 464-470.
  • 5Jan F, Kaeur J. Local Existence of General Nonlinear Parabolic Systems [ J ]. Nonlinear Analysis: Theory, Methods, Applications, 1995, 24( 11 ): 1597-1618.
  • 6WANG Ming-xin,WU Yong-hai,Global Existence and Blow-up Problems for Quasilinear Parabolic Equations with Nonlinear Boundary Conditions [J]. SIAM J Math Anal, 1993, 24(6) : 1515-1521.
  • 7Aronson D G. The Porous Medium Equation, Nonlinear Diffusion Problems [ M ]. Berlin: Springer, 1986.
  • 8Anderson J R. Stability and Instability for Solutions of the Convective Porous Medium Equation with a Nonlinear Forcing at the Boundary, I [J]. Journal of Differential Equations, 1993, 104(2) : 361-385.
  • 9Muskat M. The Flow of Homogeneous Fluids through Porous Media [ M]. New York: McGraw-Hill, 1937.
  • 10Jan F. Diffusivity versus Absorption through the Boundary [J]. Journal of Differential Equations, 1992, 99(2): 281-305.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部