期刊文献+

Explicit Reciprocity Law for Lubin-Tate Formal Groups

Explicit Reciprocity Law for Lubin-Tate Formal Groups
原文传递
导出
摘要 In this article, using Fontaine's ФГ-module theory, we give a new proof of Coleman's explicit reciprocity law, which generalizes that of Artin-Hasse, Iwasawa and Wiles, by giving a complete formula for the norm residue symbol on Lubin-Tate groups. The method used here is different from the classical ones and can be used to study the Iwasawa theory of crystalline representations. In this article, using Fontaine's ФГ-module theory, we give a new proof of Coleman's explicit reciprocity law, which generalizes that of Artin-Hasse, Iwasawa and Wiles, by giving a complete formula for the norm residue symbol on Lubin-Tate groups. The method used here is different from the classical ones and can be used to study the Iwasawa theory of crystalline representations.
作者 Lei CAO
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第5期1399-1412,共14页 数学学报(英文版)
基金 This paper is supported partially by the 973 Program
关键词 ФГ-module Formal groups explicit reciprocity law Kummer map ФГ-module, Formal groups, explicit reciprocity law, Kummer map
  • 相关文献

参考文献17

  • 1Coleman, R.: The dialogarithm and the norm residue symbol. Bull. Soc. Math. France, 109, 373-402(1981)
  • 2Artin, E., Hasse, H.: Die beiden Erganzungssatze zum Reziprozitatsgesetz der l^n-ten Einheitwurzeln. Abh.Math. Sem. Univ. Hamburg, 6, 146-162 (1928)
  • 3Iwasawa, K.: Explicit formulas for the norm residue symbol. J. Math. Soc. Japan, 20, 151-164 (1968)
  • 4Wiles, A.: Higher explicit reciprocity laws. Ann. of Math., 107, 235-254 (1978)
  • 5Benois, D.: On Iwasawa theory of crystalline representations. Duke Mathematical Journal, 104, 211-267(2000)
  • 6de Shalit, E.: "The explicit reciprocity law of of Bloch-Kato" in Columbia University Number Theory Seminar (New York, 1992). Astérique, Soc. Math. France. Montrouge, 228, 197-221 (1995)
  • 7Fontaine, J. M.: Sur certain types de représentations p-adiques du groupe de Galois d'un corps local,construction d'un anneau de Barsotti-Tate. Ann. of Math., 115(2), 529-577 (1982)
  • 8Fontaine, J. M.: Représentations p-adiques des corps locaux. The Grothedieck Festschrift, Birkhauser,Boston, t., 2, 249-309 (1991)
  • 9Fontaine, J. M.: Représentations p-adiques semi-stables. Astérisque, 223, 113-184 (1994)
  • 10Bloch, S., Kato, K.: "L-fuctions and Tamagawa numbers of motives" in the Grothendieck Festschrift, I.Prog. Math., Birkhauser, Boston, 86, 333-400 (1990)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部