期刊文献+

Asymptotics for the Korteweg-de Vries-Burgers Equation 被引量:1

Asymptotics for the Korteweg-de Vries-Burgers Equation
原文传递
导出
摘要 We study large time asymptotics of solutions to the Korteweg-de Vries-Burgers equation ut+uux-uxx+uxxx=0,x∈R,t〉0. We are interested in the large time asymptotics for the case when the initial data have an arbitrary size. We prove that if the initial data u0 ∈H^s (R)∩L^1 (R), where s 〉 -1/2, then there exists a unique solution u (t, x) ∈C^∞ ((0,∞);H^∞ (R)) to the Cauchy problem for the Korteweg-de Vries-Burgers equation, which has asymptotics u(t)=t^-1/2fM((·)t^-1/2)+0(t^-1/2) as t →∞, where fM is the self-similar solution for the Burgers equation. Moreover if xu0 (x) ∈ L^1 (R), then the asymptotics are true u(t)=t^-1/2fM((·)t^-1/2)+O(t^-1/2-γ) where γ ∈ (0, 1/2). We study large time asymptotics of solutions to the Korteweg-de Vries-Burgers equation ut+uux-uxx+uxxx=0,x∈R,t〉0. We are interested in the large time asymptotics for the case when the initial data have an arbitrary size. We prove that if the initial data u0 ∈H^s (R)∩L^1 (R), where s 〉 -1/2, then there exists a unique solution u (t, x) ∈C^∞ ((0,∞);H^∞ (R)) to the Cauchy problem for the Korteweg-de Vries-Burgers equation, which has asymptotics u(t)=t^-1/2fM((·)t^-1/2)+0(t^-1/2) as t →∞, where fM is the self-similar solution for the Burgers equation. Moreover if xu0 (x) ∈ L^1 (R), then the asymptotics are true u(t)=t^-1/2fM((·)t^-1/2)+O(t^-1/2-γ) where γ ∈ (0, 1/2).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第5期1441-1456,共16页 数学学报(英文版)
基金 The work of N. H.is partially supported by Grant-In-Aid for Scientific Research (A)(2) (No. 15204009) JSPS and The work of P. I. N. is partially supported by CONACYT
关键词 Korteweg-de Vries-Burgers equation asymptotics for large time large initial data Korteweg-de Vries-Burgers equation, asymptotics for large time, large initial data
  • 相关文献

参考文献27

  • 1Naumkin, P. I., Shishmarev, I. A.: Nonlinear Nonlocal Equations in the Theory of Waves, Translations of Math. Monographs, 133, A.M.S., Providence, R. I., 1994
  • 2Cardiel, R. E., Naumkin, P. I.: Asymptotics for nonlinear dissipative equations in the super critical case.Contemporary Mathematics, 307, 47-67 (2002)
  • 3Saut, J. C.: Sur quelques généralisations de l'équation de Korteweg-de Vries. J. Math. Pures Appl., 58(1),21-61 (1979)
  • 4Naumkin, P. I.: On the asymptotics as t→∞ of solutions to nonlinear equations for the case of maximal order. Diff. Equations, 29(6), 1071-1074 (1993)
  • 5Burgers, J. M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech., 1, 171-199(1948)
  • 6Karch, G.: Self-similar large time behavior of solutions to the Korteweg-de Vries-Burgers equation. Nonlinear Anal., T.M.A., 35A(2), 199-219 (1999)
  • 7Naumkin, P. I., Shishmarev, I. A.: Asymptotic relationship as t →∞ between solutions to some nonlinear equations I, II. Differential Equations, 30, 806-814; 1329-1340 (1994)
  • 8Amick, C. J., Bona, J. L., Schonbek, M. E.: Decay of solutions of some nonlinear wave equations. J. Diff.Eqs., 81, 1-49 (1989)
  • 9Biler, P.: Asymptotic behavior in time of solutions to some equations generalizing the Korteweg-de Vries-Burgers equation. Bull. Polish Acad. Sci., Mathematics, 32(5-6), 275-282 (1984)
  • 10Bona, J. L., Demengel, F., Promislow, K. S.: Fourier spiitting and dissipation nonlinear dispersive waves.Proc. Roy. Soc. Edinburgh Sect. A, 129(3), 477-502 (1999)

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部