期刊文献+

Inverse Scattering for a Schr■dinger Operator with a Repulsive Potential

Inverse Scattering for a Schr■dinger Operator with a Repulsive Potential
原文传递
导出
摘要 We consider a pair of Hamiltonians (H, H0) on L2(R^n), where H0=p^2 -x^2 is a SchrSdinger operator with a repulsive potential, and H = H0+V(x). We show that, under suitable assumptions on the decay of the electric potential, V is uniquely determined by the high energy limit of the scattering operator. We consider a pair of Hamiltonians (H, H0) on L2(R^n), where H0=p^2 -x^2 is a SchrSdinger operator with a repulsive potential, and H = H0+V(x). We show that, under suitable assumptions on the decay of the electric potential, V is uniquely determined by the high energy limit of the scattering operator.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第5期1485-1492,共8页 数学学报(英文版)
关键词 Inverse scattering Repulsive potential Inverse scattering, Repulsive potential
  • 相关文献

参考文献13

  • 1Reed, M., Simon, B.: Methods of mathematical physics, Tome 2, Academic Press, 1978
  • 2Hormander, L.: Symplectic classification of quadratic forms, and generalized Mehler formulas. Math. Z.,219(3), 413-449 (1995)
  • 3Bony, J. F., Carles, R., Hafner, D., Michel, L.: Scattering theory for the Schrodinger equation with repulsivepotential, Arxiv: math. AP/0402170, 2004, submitted
  • 4Enss, V., Weder, R.: The geometrical approach to multidimensional inverse scattering. J. Math. Phys,36(8), 3902-3921 (1995)
  • 5Arians, S.: Geometric approach to inverse scattering for the Schrodinger equation with magnetic and electric potentials. J. Math. Phys., 38(6), 2761-2773 (1997)
  • 6Jung, W.: Geometric approach to inverse scattering for Dirac equation. J. Math. Phys., 36(8), 3902-3921(1995)
  • 7Weder, R.: Multidimensional inverse scattering in an electric field. Journal of Functional Analysis, 139(2),441-465 (1996)
  • 8Nicoleau, F.: Inverse scattering for Stark Hamiltonians with short-range potentials. Asymptotic Analysis,35(3-4), 349-359 (2003)
  • 9Weder, R.: The Ahaxonov-Bohm effect and time-dependent inverse scattering theory. Inverse Problems,18(4), 1041-1056 (2002)
  • 10Nicoieau, F.: A stationary approach to inverse scattering for Schrodinger operators with first order perturbation. Communication in P.D.E, 22(3-4), 527-553 (1997)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部