期刊文献+

分段线性微分包含系统的最优控制设计

Optimal control of piecewise linear differential inclusions
下载PDF
导出
摘要 针对分段线性微分包含系统,根据Hamilton-Jacobi-Bellman(H-J-B)不等式将最优控制设计问题转化成最优控制性能上界的优化问题及性能下界的求取问题.其中性能上界的优化是一组以反馈增益为寻优参数的双线性矩阵不等式(bilinear matrix inequalities,BMI)问题,而性能下界是一组基于线性矩阵不等式(linear matrixinequalities,LMI)的半正定规划问题.结合遗传算法和内点法设计了一种混合算法对BMI问题进行求解.算例表明方法的有效性. Based on Hamihon-Jacobi-Bellman inequalities, the optimal control of piecewise linear differential inclusions is converted to the problem of seeking upper and lower bounds of the cost function. The design of upper bound can be cast as a bilinear matrix inequalities (BMI) problem in which the feedback gain is a set of optimization parameters, and the lower bound computation can be solved as a semidefinite programming problem based on linear matrix inequalities (LMI). A mixed algorithm that combines genetic algorithm and interior-point method is designed to solve the BMI problem. The results from numerical examples illustrate the effectiveness of the proposed method.
出处 《系统工程学报》 CSCD 北大核心 2006年第4期341-346,共6页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(70471049)
关键词 分段线性微分包含系统 最优控制 双线性矩阵不等式 内点法 遗传算法 piecewise linear differential inclusions optimal control bilinear matrix inequalities interior-point algorithm genetic algorithm
  • 相关文献

参考文献7

  • 1Johansson M.Piecewise Linear Control Systems[M].Berlin:Springer-Verlag,2003.61-63.
  • 2Goh K C,Turan L,Safonov M G,et al.Bi-affine matrix inequality properties and computational methods[A].In Proceedings of the American Control Conference[C].Baltimore,MD,1994.850-855.
  • 3Fukuda M,Kojima M.Branch-and-cute algorithms for the bilinear matrix inequality eigenvalue problem[J].Computational Optimization and Applications,2001,19(1):79-105.
  • 4Hassibi A,How J,Boyd S.A path-following method for solving BMI problems in control[A].In Proceedings of the American Control Conference[C].San Diego,CA,1999.1385-1389.
  • 5Boyd S,El Ghaoui L,Feron E,et al.Linear Matrix Inequalities in System and Control Theory[M].Philadelphia:SIAM,1994.7-24.
  • 6Bellman R.Dynamic Programming[M].Princeton:Princeton University Press,1957.
  • 7张彤,张华,王子才.浮点数编码的遗传算法及其应用[J].哈尔滨工业大学学报,2000,32(4):59-61. 被引量:56

二级参考文献5

  • 1[1] ZBIGNIEW MICHALEWICZ, CEZARY Z J, JACEK B K. A modified genetic algorithm for optimal control problems[J]. Computers Math Applic, 1992, 23(2): 83-94.
  • 2[2] JIM ANTONISSE. A new interpretation of schema notation that overturns the binary encoding constraint//. Proc 3rd Int Conf Genetic Algorithms[C]. 1989.
  • 3[3] GREFENSTETTE J J, BAKER J E. How genetic algorithms work: a critical look at lmplicit parallelism//. Proc 3rd nt Conf Genetic Algorithms[C]. 1989.
  • 4[4] DARRELL WHITLEY. The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best//. Proc 3rd Int Conf Genetic Algorithms[C]. 1989.
  • 5[5] SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans on System Man and Cybernetics, 1994, 24(4): 656-667.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部