期刊文献+

基于灰度曲线几何特征的虹膜内边缘定位方法

Location method of iris inner boundary based on geometrical features of the curves of gray levels
下载PDF
导出
摘要 为了解决以往虹膜内边缘(瞳孔边缘)定位方法算法复杂、计算量大和抗干扰性差的问题,提出了一种新的内边缘定位方法。研究了虹膜图像行、列灰度曲线的几何特征与瞳孔区域边界之间的关系,即:虹膜图像行、列灰度曲线上与瞳孔区域对应的部分有类似于“深井”的几何特征,利用它们之间的关系,通过寻找行列灰度曲线上“深井”的最大“井宽”定位瞳孔位置。实验结果表明此方法算法简单、计算量小、抗干扰性强,并且能够准确的定位虹膜的内边缘。 To reduce the complexity and calculation burden associated with locating an iris inner boundary, as well as to enhance noise rejection, a new method is proposed for locating an iris inner boundary based on the geometrical features of the curves of gray levels. First, the relationships between the geometrical features of the curves of gray levels for different columns and rows within the edges of a pupil were determined, with the gray levels having a geometrical character like a deep well. Second, the iris inner boundary was located based on the pointed relationships by finding the maximal width of the deep well. Experiment results show that the proposed method is simple, requires minor calculations, exhibits a strong ability to reject noise, and is accurate in locating the iris inner boundary.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第4期536-540,共5页 Journal of Harbin Engineering University
基金 黑龙江省科技厅科技攻关基金资助项目(GC03A106)
关键词 虹膜 内边缘 定位 灰度曲线 几何特征 iris inner boundary location the curves of gray levels geometrical.features
  • 相关文献

参考文献9

二级参考文献16

  • 1解梅,顾德仁.使用小波变换的图像边缘检测算法[J].电子科技大学学报,1996,25(4):353-356. 被引量:13
  • 2唐向宏,龚宇,龚耀寰.用M带小波变换实现图像的边缘检测[J].电子科技大学学报,1997,26(2):117-120. 被引量:3
  • 3[1]Gabor D. Theory of communication[J]. J Inst Elec Eng, 1946, 93:429-457.
  • 4[2]Daugman J G. Two-dimensional spectral analysis of cortical receptive field profiles[J]. Vision Research, 1980, 20:847-856.
  • 5[3]Daugman J G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[J]. Journal of the Optical of America A, 1985, 2(7):1160-1169.
  • 6[4]Daugman J G. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11):1148-1161.
  • 7[5]Daugman J G. Biometric personal identification system based on iris analysis[P]. US Patent 5291560, 1994-03-01.
  • 8[6]Daugman J. Recognizing persons by their iris pattern[J]. Information Security Technical Report, 1998, 13(1):33-39.
  • 9Daugman J G.High confidence visual recognition of persons by a test of statistical independence[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1148-1161.
  • 10Wildes R P. Iris recogniton:An emerging biometric technology[J].Proceedings of the IEEE,1997,85(9):1348-1363.

共引文献328

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部