摘要
遗传算法提供求解复杂系统优化问题的通用框架,Rough集理论的属性依赖度可以确定各属性对系统分类的重要性。本文通过一个信息表实例将遗传算法和Rough集理论结合起来以计算属性的重要性,两者结合能有效进行属性重要性的计算,并能进行计算机自动计算和信息处理。
Genetic Algorithms provide a general frame to optionize problem solutions of complex systems. In Rough Sets Theory, the importance of every attribute to system classification can be determined by dependency of attributes. This paper combines Genetic Algorithms and Rough Sets Theory to compute importance of attributes by an example of information table, the combination enables us to compute importance of attributes effectively, it is also useful for computer auto-computing and information processing.
出处
《现代计算机》
2006年第8期4-7,12,共5页
Modern Computer
基金
广东省科学技术基金项目(05200302)
关键词
遗传算法
ROUGH集理论
属性重要性
信息表
Genetic Algorithms
Pawlak Model Rough Sets Theory
Importance of Attributes
Information Table