摘要
In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change rate of normalized medal frequency. Secondly, the profile and layer of the damaged member is also determined by the pmbabilistic neural network with input of the normalized damage-signal index. Finally, the damage extent is determined by the back propagation neural networks with input of the squared change rate of modal frequency. So the size of the network and the training time can be reduced greatly. All these networks are trained with simulated data obtained from the finite element model of an experiment model. Then these trained neural networks are examined with data obtained from impulse tests on the experiment model. The experiment results show that the trained neural networks are able to detect the damaged member with reasonable accuracy.
In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change rate of normalized medal frequency. Secondly, the profile and layer of the damaged member is also determined by the pmbabilistic neural network with input of the normalized damage-signal index. Finally, the damage extent is determined by the back propagation neural networks with input of the squared change rate of modal frequency. So the size of the network and the training time can be reduced greatly. All these networks are trained with simulated data obtained from the finite element model of an experiment model. Then these trained neural networks are examined with data obtained from impulse tests on the experiment model. The experiment results show that the trained neural networks are able to detect the damaged member with reasonable accuracy.
基金
The project was financially supported by the National Natural Science Foundation of China (Grant No.50479027)and by the Natural Science Foundation of Qingdao (Grant No.05-2-JC-88)