摘要
The drag characteristics of the Wells turbine are difficult to be accurately predicted because of the influences of many variables. Detailed analyses about the effects of these variables on the drag characteristics educe that the most sensifive parameters to the drag characteristics are the turbine solidity of the turbine and incidence angle of airflow. In this paper, an experimental research is conducted on the pressure drop across the flat- plate rotor which is used to simulate the Wells turbine. After nondimensionalization and fitting of the experimental data, a common experiential formula is obtained. Compared with the experimental data from literature, the computational results are satisfactory. Thus, this report provides a simple and convenient method for predicting the drag characteristics of the Wells turbine and optimizing the match design between an oscillating water column and a chamber.
The drag characteristics of the Wells turbine are difficult to be accurately predicted because of the influences of many variables. Detailed analyses about the effects of these variables on the drag characteristics educe that the most sensifive parameters to the drag characteristics are the turbine solidity of the turbine and incidence angle of airflow. In this paper, an experimental research is conducted on the pressure drop across the flat- plate rotor which is used to simulate the Wells turbine. After nondimensionalization and fitting of the experimental data, a common experiential formula is obtained. Compared with the experimental data from literature, the computational results are satisfactory. Thus, this report provides a simple and convenient method for predicting the drag characteristics of the Wells turbine and optimizing the match design between an oscillating water column and a chamber.
基金
This project was financially supported by the Talent Recruitment Funds of Guangdong Ocean University (Grant No.0512092) and the Key Subject Construction Foundation of Guangdong Ocean University (Grant No.ZD2006004)