期刊文献+

利用积分算子方程的小波-矩量法分析频率选择反射面 被引量:1

The Analysis of FSS Using Wavelet MoM
下载PDF
导出
摘要 小波-矩量法以小波基作为矩量法中的基函数,通过Galerkin法可以获得很稀疏的阻抗矩阵,用迭代法求解时可减少计算机内存和计算时间。该文以有限尺寸的频率选择反射面为例,用小波-矩量法分析散射特性和电流分布,着重讨论了阻抗矩阵的稀疏化程度对计算精度的影响。结果表明,当非零元素仅为10%时,仍能达到满意的精度。 Wavelet MoM can produce very sparsely populated impedance matrix, using Galerking’s method with wavelets as the basis functions.It saves the storage and CPU time when the sparse matrix equation is solved by the iterative solvers such as LSQR.The finite sized frequency selective surface (FSS) is taken as an example.Its scattering properties and current distribution are analyzed.The affect of sparsity of the impedance matrix on the accuracy of the results is emphasized.The results show that it can give satisfactory accuracy when the percentage of the nonzero elements is only about 10%.So wavelet MoM is one of the efficient methods for the large problems.
出处 《南京理工大学学报》 CAS CSCD 1996年第6期537-540,共4页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金 高校博士点基金
关键词 稀疏矩阵 电磁场 积分算子方程 小波-矩量法 matrices,precision,computational methods method of moments,frequency selective surface
  • 相关文献

同被引文献17

  • 1马广德.介质涂复旋转体雷达散射截面的数值计算方案[J].南京理工大学学报,1993,17(4):77-81. 被引量:1
  • 2Munk B A.Frequency selective surfaces:Theory anddesign[M].New York,USA:Wiley,2000.
  • 3Mittra R,Chan C H,Cwik T.Techniques for analyzingfrequency selective surfaces—A review[J].Proceedingsof the IEEE,1988,76(12):1593-1615.
  • 4Taylor P S,Parker E A,Batchelor J C.An analysis an-nular ring frequency selective surface[J].IEEE Trans-actions on Antennas and Propagation,2011,59(9):3265-3271.
  • 5Lin Baoqin,Liu Shaobin,Yuan Naichang C.Analysis offrequency selective surfaces on electrically and magne-tically anisotropic substrates[J].IEEE Transactions onAntennas and Propagation,2006,54(2):674-680.
  • 6Munk B,Kouyoumjian R,Peters Jr L.Reflection prop-erties of periodic surfaces of loaded dipoles[J].IEEETransactions on Antennas and Propagation,1971,19(5):612-617.
  • 7Chen Ming,Wang Shuna,Chen Rushan,et al.Electro-magnetic analysis of electrically large and finiteperiodic frequency selective surfaces[A].Asia-PacificMicrowave Conference[C].Piscataway,NJ,USA:IEEE,2008.
  • 8Stevanovic I,Crespo-Valero P,Blagovic K,et al.Integral-equation analysis of 3-d metallic objects arranged in 2-dlattices using the ewald transformation[J].IEEE Transac-tions on Microwave Theory and Techniques,2006,54(10):3688-3697.
  • 9Lu Weibing,Cui Tiejun,Qian Zhiguo,et al.Accurateanalysis of large-scale periodic structures using an effi-cient sub-entire-domain basis function method[J].IEEE Transactions on Antennas and Propagation,2004,52(11):3078-3085.
  • 10Lu Weibing,Cui Tiejun,Qian Zhiguo,et al.Fast algo-rithms for large-scale periodic structures[J].IEEE An-tennas and Propagation Society Symposium,2004,4:4463-4466.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部