摘要
小波-矩量法以小波基作为矩量法中的基函数,通过Galerkin法可以获得很稀疏的阻抗矩阵,用迭代法求解时可减少计算机内存和计算时间。该文以有限尺寸的频率选择反射面为例,用小波-矩量法分析散射特性和电流分布,着重讨论了阻抗矩阵的稀疏化程度对计算精度的影响。结果表明,当非零元素仅为10%时,仍能达到满意的精度。
Wavelet MoM can produce very sparsely populated impedance matrix, using Galerking’s method with wavelets as the basis functions.It saves the storage and CPU time when the sparse matrix equation is solved by the iterative solvers such as LSQR.The finite sized frequency selective surface (FSS) is taken as an example.Its scattering properties and current distribution are analyzed.The affect of sparsity of the impedance matrix on the accuracy of the results is emphasized.The results show that it can give satisfactory accuracy when the percentage of the nonzero elements is only about 10%.So wavelet MoM is one of the efficient methods for the large problems.
出处
《南京理工大学学报》
CAS
CSCD
1996年第6期537-540,共4页
Journal of Nanjing University of Science and Technology
基金
国家自然科学基金
高校博士点基金
关键词
稀疏矩阵
电磁场
积分算子方程
小波-矩量法
matrices,precision,computational methods
method of moments,frequency selective surface