摘要
该文讨论了线性结构关系模型β′xk+α=0ξk=xk+εkk=1,2,…,n{εk,k=1,2,…,n}i.i.d.E(ε1)=0var(ε1)=σ2Im式中,{xk,k=1,2,…,n}为一组i.i.d.的不可观测的m维随机向量,{xk,k=1,2,…,n}与{εk,k=1,2,…,n}相互独立。在一些条件下,用重对数律及对称阵特征扰动理论证明了LS估计量β,α,σ2的强相合性、唯一性,并且给出估计量的强收敛速度为O(n-1/2(lnlnn)1/2)。
In this paper the linear structural relationship model β′x k+α=0 ξ k=x k+ε k k=1,2,…,n {ε k ,k=1,2,…,n} i.i.d . E(ε 1)=0 var (ε 1)=σ 2I m is discussed,where {x k ,k=1,2,…,n} is a set of independent identically distributed and unobservable m dimensional random vectors, {x k ,k=1,2,…,n} and {ε k ,k=1,2,…,n} are mutually statistically independent.Under some conditions,the strong consistency and uniqueness of the LS estimator ,, 2 are proved by using the law of the iterated logarithm and characteristic disturbance theory of symmetric matrix,the strong convergent rate of estimators is given by O(n -1/2 ( lnln n) 1/2 ) .
出处
《南京理工大学学报》
CAS
CSCD
1996年第6期564-567,共4页
Journal of Nanjing University of Science and Technology
关键词
线性模型
参数估计
重对数律
回归
强收敛速度
linear models,parameter estimations,law of iterated logarithm
structural relationship,strong consistency,strong convergent rate