期刊文献+

一种求解梁动力响应的新方法 被引量:5

A NEW METHOD FOR SOLVING DYNAMIC RESPONSE OF BEAMS
下载PDF
导出
摘要 基于动刚度方法与常规有限元方法提出了一种计算梁动力响应的新方法。单元插值形函数是由梁的自由振动方程导出的,称为精确形函数。应用哈密顿原理推出振动控制方程。利用傅立叶展开定理求解梁的动力响应。数值模拟结果与常规有限元方法进行了比较,结果表明了新方法的有效性。 This study develops a new method for solving beam dynamic response based on combining dynamic stiffness method with conventional finite element method.In contrast to the conventional finite element method,shape functions used are deried from free vibration equation of a continuum beam.Hence, the shape functions resulted are named the exact shape functions.The Hamilition principle is employed to formulate the vibration equations.The Fourier expanding theorem is adopted to solve the dynamic responses.Simulation results are compared with the conventional ones to verify the proposed method.
作者 吴国荣
出处 《振动与冲击》 EI CSCD 北大核心 2006年第4期146-148,共3页 Journal of Vibration and Shock
关键词 动力响应 精确形函数 有限元 dynamic response,beam,exact shape function,finit element method(FEM)
  • 相关文献

参考文献9

  • 1Warburton G B.The dynamical behaviour of structures,New York:Pergamon Press Inc.,1976
  • 2Petyt M.Introduction to finite element vibration analysis,Cambridge:Cambridge University Press,1990
  • 3Kolousek V.Dynamics in engineering structrures,London:Butterworth,1973
  • 4Chen Y H.General dynamic stiffness matrix of a Timoshenko beam for transverse vibrations,Earthquake Engineering and Structrual Design,1987,15(3):391-402
  • 5Leung A Y T,Zhou W E.Dynamic stiffness analysis of axially loaded Non-uniform Timoshenko columns,Computer and Structures,1995,56(4):577-588
  • 6Leung A Y T,Zhou W E.Dynamic stiffness analysis of laminated composite plates,Thin-Walled Structures,1996,25(2):109-133
  • 7Petyt M,Gelat P N.Vibration of loudspeaker cones using dynamic stiffness method,Applied Acoustics,1998,53(4):313-332,
  • 8Kim J,Chang S P.Dynamic stiffness matrix of an inclined cable,Engineering Structures,2001,23(6):1614-1621
  • 9Banerjee J R.Free vibration analysis of a twisted beam using the dynamic stiffness method,International Journal of Solids and Structures,2001,38(3):6703-6722

同被引文献30

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部