期刊文献+

一种设备实时监控新方法的研究与应用

Research & application of novel real-time equipment monitoring method
下载PDF
导出
摘要 根据加权K-means算法,建立历史常规参数的聚类模型,用以实时检测设备运行的参数点。对属于簇团内的参数点,分析簇团内不同相似度时的参数个数比例和阈值,提出紧密(离核)指数的定义;对簇团外的异常点,结合CBLOF(t)的概念,提出了一种新的离群指数的定义,并根据实际情况进行综合,得出了综合指数的定义。据此,可有效地对设备的运行状况进行监控,以起到设备运行优化和故障预警的作用。 To monitor process industry's production, the clustering models of history conventional parameters were constructed based on feature weight's K-means algorithm. The model was used to conduct real-time inspection in parameters during equipment operation. After analyzing proportions and thresholds among different similarity factors and the whole cluster by different similarity methods, a new factor of compress/scatter was defined. Based on the conception of CBLOF(t), a new factor of outlier was brought forward to study the realtime outlier. The two factors were combined to a new factor of combination by different instances. Based on the models and the new factors, equipment operations could be effectively monitored so as to optimize equipments process and prevent defects.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2006年第8期1288-1292,共5页 Computer Integrated Manufacturing Systems
基金 国家863/CIMS主题资助项目(No.2002AA412410)~~
关键词 聚类分析 离群数据挖掘 紧密(离核)指数 离群指数 综合指数 流程企业 clustering analysis outlier mining factor of compress/scatter factor of outlier factor of combination process industry
  • 相关文献

参考文献10

  • 1HALL L O,OZYURT B,BEZDEK J C.Clustering with a genetically optimized approach[J].IEEE Transactions on Evolutionary Computation,1999,3(2):103-112.
  • 2BARNETT V,LEWIS T.Outliers in statistical data[M].New York,N.Y.,USA:John Wiley & Sons,1994.176-201.
  • 3KNORR E,NG R.A unified approach for mining outliers:properties and computation[A].Proceedings of 1997 Intenational Conference on Knowledge Discovery and Data Mining(KDD' 97)[C].Newport Beach,Cal.,USA:AAAI Press,1997.219-222.
  • 4BREUNING M,KRIEGEL H,NG R.OPT ICS of:identifying local outliers[A].Proceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD' 99)[C].Prague,Minn.USA:Springer-Verlag LNAI1504,1999.262-270.
  • 5HE Zengyou,XU Xiaofei,DENG Shengchun.Discovering cluster-based local outliers[J].Pattern Recognition Letters,2003,24(9):1641-1650.
  • 6JIANG M,TSENG S,SU C M.Two-phase clustering process for outliers detection[J].Pattern Recognition Letters,2001,22(6):691-700.
  • 7HE Zengyou,XU Xiaofei,HUANG Zhexue.Mining class outliers:concepts,algorithms and applications in CRM[J].Expert Systems with Applications,2004,27(4):681-697.
  • 8XIONG Q N,YBERG T R,XIONG G Y.Production plan&schedule system used in modern refinery CIMS[A].Proceedings of the 2000 IEEE,International Conference on Control Applications,Archorage[C].Piscatway,N.J.,USA:IEEE Press,2000.754-759.
  • 9闫伟,张浩,陆剑峰,张辉.加权聚类分析在设备运行监控中的应用[J].计算机工程与应用,2004,40(26):31-32. 被引量:3
  • 10GIBSON D,KLEIBERG J,RAGHAVAN P.Clustering categorical data:an approach based on dynamic systems[A].Proceedings of the VLDB98[C].New York,N.Y.,USA:Morgan Kaufman,1998.311-323.

二级参考文献6

  • 1JiaweiHan MichelineKamber.数据挖掘:概念与技术[M].机械工业出版社,2004.26.
  • 2Oracle9i Business Intelligence Beans. An Oracle White Paper,http ://otn.oracle.com, 2002-09
  • 3Oracle9i OLAP:A Scalable Web-Based Business Intelligence Platform. An Oracle White Paper,http://otn.oracle.com,2001-04
  • 4.[M].计算机工程与应用出版社,2001.237~251.
  • 5张晓冬,张书杰,王万亭.信息过滤的模糊聚类模型[J].计算机工程与应用,2002,38(9):34-36. 被引量:6
  • 6王熙照,王亚东,湛燕,袁方.学习特征权值对K-均值聚类算法的优化[J].计算机研究与发展,2003,40(6):869-873. 被引量:48

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部