期刊文献+

二阶微分方程奇调和解的存在性 被引量:1

The Existence of Odd-harmonic Solutions for Second Order Differential Equations
下载PDF
导出
摘要 利用度理论研究了二阶Liénard方程奇调和解的存在性和二阶Duffing方程具有偶性和奇性的奇调和解的存在性,改进了一些已有的结果. In this paper, the existence of odd-harmonic solutions for second order Liénard equations and even and odd, odd-harmonic solutions for second order Dulling equations are studied by using degree theory and some known results are improved.
出处 《应用泛函分析学报》 CSCD 2006年第2期130-138,共9页 Acta Analysis Functionalis Applicata
基金 中国矿业大学青年科研基金(A200403)
关键词 LIÉNARD方程 DUFFING方程 奇调和解 LERAY-SCHAUDER度 Liénard equations Dulling equations odd-harmonic solutions Leray-Schauder degree
  • 相关文献

参考文献6

  • 1Nakajima F.Some conservative pendulum equation with forcing term[J].Nonlinear Analysis,1998,34:1117-1121.
  • 2Mawhin J.Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations[J].Differential Equations,1984,52:264-287.
  • 3Mawhin J.The forced pendulum:a paradigm for nonlinear analysis and dynamical systems[J].Expo Math,1988,6:271-287.
  • 4Ortega R.Counting periodic solutions of the forced pendulum equation[J].Nonlinear Analysis,2000,42:1055-1062.
  • 5Pinsky M A,Zevin A A.Oscillations of a pendulum with a periodically varying length and a model of swing[J].Non-linear Mechanics,1999,34:105-109.
  • 6Deimling K.Nonlinear Functional Analysis[M].New York:Springer-Verlag,1985.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部