期刊文献+

随机微分系统的耗散性

Dissipativity of Stochastic Differential Systems
下载PDF
导出
摘要 提出了有关Ito型随机微分系统耗散性理论的新概念:按模耗散、按模等度耗散和按模一致耗散,并利用Lyapunov方法,借助于Ito微分公式沿着Ito型随机微分系统的解对所构造的Lyapunov函数求导数,给出了Ito型随机微分系统有关按模耗散理论的一些代数判据,获得了与确定性常微分系统耗散性理论相对应的结论,最后的算例证明了该方法的有效性和可行性。 Some new conceptions are presented about the dissipativity theory of Ito stochastic differential systems as follows., dissipativity in module, equi-dissipativity in module and uniform dissipativity in module. Moreover, using Ito differential formula to the constructed Lyapunov function along solutions of Ito stochastic differential systems, Lyapunov method is adopted to set up the fundamental theory of dissipativity in the module corresponding to the theory on the dissipativity of deterministic ordinary differential systems. Finally, some examples show the feasibility and the validity of the method.
作者 罗琦 张雨田
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2006年第B07期172-176,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(60574042)资助项目。
关键词 随机 微分系统 LYAPUNOV函数 耗散性 Ito微分公式 stochastic differential systems Lyapunov function dissipativity Ito differential formul
  • 相关文献

参考文献12

二级参考文献21

  • 1刘衍胜.抽象空间中微分方程弱解的存在性和唯一性[J].工程数学学报,1996,13(2):39-45. 被引量:3
  • 2[1]Willems J C. Dissipative dynamical systems- -Part 1: general theory. Archive for Rational Mechanics Analysis, 1972, 45(5):321~351
  • 3[2]Willems J C. Dissipative dynamical systems- -Part 2: linear systems with quadratic supply rates. Archive for Rational Mechanics Analysis, 1972, 45(5):352~393
  • 4[3]Hill D J, Moylan P J. Dissipative dynamical systems: Basic input-output and state properties. Journal of Franklin Institute, 1980, 309(5):327~357
  • 5[4]Xie S, Xie L, de Souza C E. Robust dissipative control for linear systems with dissipative uncertainty. International Journal of Control, 1998, 70(2):169~191
  • 6[5]Yuliar S, James M R, Helton J W. Dissipative control systems synthesis with full state feedback. Mathematics of Control, Signal and Systems, 1998, 11(4):335~356
  • 7[6]Tan Z, Soh Y C, Xie L. Dissipative control for linear discrete-time systems. Automatica, 1999, 35(9):1557~1564
  • 8[7]Horn R, Johnson C. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991
  • 9Tang Q., Mathematical problems in formulating superconductivity problems, Preprint: University of Sussex,1992.
  • 10Gor'kov L. P., Eliashberg G. M., Generalization of the Ginzburg-Landau equations for nonstationary problem in the case of alloys with paramagentic impurities, Sov. Phys. JETP, 1968. 27(3): 328-336.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部