期刊文献+

复杂系统混沌行为判别与混沌时间序列的分形建模 被引量:3

Chaotic Behavior Decision of Complex System and Fractal Based Chaotic Time Serials Modeling
下载PDF
导出
摘要 提出了以有限维自由度及Lyapunov指数联合分析为判据的复杂系统混沌行为判别方法.避免了判别过程中将纯随机行为及复杂确定性线性行为误判为混沌行为。以球磨机矿浆流量为例,在相空间重构的基础上对系统关联维数进行了分析.验证了系统具有有限维自由度。通过Lyapunov指数分析考察了系统的时空演化特性并验证了系统的初值敏感性,从而分析出该流量具有确定性与随机性相互统一的混沌运动特征。利用Hurst指数通过分形内插算法对流量信号进行了精确重构,建立了一种可准确重演系统时空变化规律的模型. A combination analysis approach composed of finite degree of freedom and Lyapunov exponent is presented for determining the chaotic behavior of a complex system. The approach avoids the common problems of error estimation in the pure stochastic systems and complex deterministic non-linear systems to chaotic systems. The mine plasma traffic is used as an analysis object, the phase space of the traffic time serials is reconstructed and the correlation dimension is analyzed, which indicate that the dynamical system has finite degree of freedom. The nonlinear evolution mechanism is observed and the initial value sensitive characteristic of the system is demonstrated through Lyapunov exponent analysis. Finally, the traffic serials signalsare reconstructed by using fractal interpolation algorithm and gaining reasonably accurate models.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2006年第B07期34-37,共4页 Journal of Nanjing University of Aeronautics & Astronautics
基金 教育部博士学科点专项科研基金(20030145030)资助项目
关键词 混沌系统 有限维自由度 LYAPUNOV指数 分形插值 chaotic system fifiite, degree of freedom Lyapunov exponent fractal interpolation
  • 相关文献

参考文献8

  • 1Haykin S,Li X B. Detection of signals in chaos [J].IEEE Proceedings, 1995, 83(1):95-122.
  • 2Lo T, Leung H,Litva J, et al. Fractal characterization of sea-scattered signals and detection of sea-surface targets [J]. IEE Proceedings F, 1993, 140(4)243-250.
  • 3Jaggard D L, Sun X. Scattering from fractal corrugated surfaces[J]. Journal of the Optical Society of America, 1990, 7(6): 1131-1139.
  • 4Mandelbrot B B. Fractals: form, chance and dimension[M]. San Francisco: Freeman W H, 1997: 36-85.
  • 5Xia H. Micro cellular propagation characteristics for personal communications in urban and suburban environments [J]. IEEE Transaction on Vehicular Technology, 1994, 43(3):743-751.
  • 6Takens F. Detecting strange attractor in turbulence[J]. Mathematics, 1981, 898:366-381.
  • 7Grassberger P P. Measuring the strangeness of strange attractor[J]. Physica D, 1983, 9:189-208.
  • 8Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series [J].Physica D, 1985, 16: 285-317.

同被引文献18

  • 1方林波,武红霞,王治强,刘杰,王书峰.面向对象建模方法在性能建模中的应用研究[J].北京工业大学学报,2009,35(9):1273-1278. 被引量:1
  • 2朱永娇,刘洪刚,郑威.复杂系统基于定性关系的建模与诊断推理研究[J].系统工程与电子技术,2007,29(6):903-906. 被引量:2
  • 3李妮,郑宏涛,彭晓源,李伯虎.仿真网格中协同建模网格服务研究及实现[J].计算机集成制造系统,2007,13(9):1686-1689. 被引量:4
  • 4Wiggins S.Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].Springer Verlag,1990.
  • 5David Logan,Joseph Mathew.Using the Correlation Dimension for Vibration Fault Diagnosis of Rolling Element Bearing[J].Basic Concepts Mechanical Systems and Signal Processing,1996,10(3):241-250.
  • 6Kugiumtzis D.State Space Reconstruction Parameters in the Analysis of Chaotic Time Series the Role of the Time Window Length[J].Physica:D,1996,95(1):13-28.
  • 7王兴文.复杂非线性系统中的混沌[M].北京:电子工业出版社,2003.
  • 8Jeong Jaeseung,Kim Daijin,Chae Jeongho,et al.Nonlinear Analysis of the EEG of Schizophrenics with Optimal Embedding Dimension[J].Medical Engineering Physics,1998,20:669-67.
  • 9YUAN C Q, LI J, YAN X P, et al. The use of the fractal description to characterize engineering surfaces and wear particles [ J ]. Wear, 2003,25 ( 5 ) : 315 - 326.
  • 10MANDELBROT B B, WHEELER J A. The fractal geometry of nature [ J ]. American Journal of Physics, 1983,51 ( 3 ) : 286 - 287.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部